The Descent Lemma

less than 1 minute read

The descent lemma is the reason why the inverse Lipschitz constant of the gradient gives us a good stepsize. It goes as follows:

Descent Lemma
Let $f:\mathbb{R}^d\rightarrow \mathbb{R}$ be a continously differentiable function whose gradient $\nabla f$ is Lipschitz continuous with constant $L$. Then, \(f(x+y)\leq f(x)+y^\top\nabla f(x) +\frac{L}{2}\lVert y\rVert^2.\)

Proof: We denote with $g(\alpha)=f(x+\alpha y)$. Then we have: \(\begin{align*} f(x+y)-f(x) &= g(1)-g(0)\\ &= \int_0^1 \frac{\mathrm{d}g(\alpha)}{\mathrm{d}\alpha} \mathrm{d}\alpha\\ &= \int_0^1 \frac{\mathrm{d}}{\mathrm{d}\alpha} f(x+\alpha y)\mathrm{d}\alpha\\ &= \int_0^1 y^\top \nabla f(x+\alpha y)\mathrm{d}\alpha\\ &= \int_0^1 y^\top \nabla f(x+\alpha y) -y^\top +y^\top\nabla f(x)\mathrm{d}\alpha\\ &\leq \left\lvert \int_0^1 y^\top(\nabla f(x+\alpha y)-\nabla f(x))\mathrm{d}\alpha\right\rvert + \int_0^1y^\top\nabla f(x)\mathrm{d}\alpha\\ &\leq \int_0^1\lVert y\rVert\lVert\nabla f(x+\alpha y)-\nabla f(x)\rVert\mathrm{d}\alpha + y^\top\nabla f(x)\\ &\leq \lVert y\rVert L\int_0^1 \lVert x+\alpha y-x\rVert \mathrm{d}\alpha + y^\top\nabla f(x)\\ &= \lVert y\rVert^2 L\frac12 + y^\top\nabla f(x) \end{align*}\) From the descent lemma follows that using a stepsize $\alpha < \frac{2}{L}$ results in a guaranteed decrease of gradient descent steps. This is because we have according to the descent lemma: \(\begin{align*} f(x-\alpha\nabla f(x))&\leq f(x) -\alpha\lVert \nabla f(x)\rVert^2 + \frac{L}{2}\lVert y\rVert^2\\ &= f(x)+\alpha\left(\frac{L}{2}\alpha - 1\right)\lVert \nabla f(x)\rVert^2 \end{align*}\)

From the last inequality follows that we decrease the objective with every gradient descent step if $\alpha<\frac{L}{2}$.

Categories:

Updated: