
Proofs, Exercises and Literature - k-means

1 Proofs

1.1 Objectives of k-means

The objective of k-means is to minimize the within cluster scatter. Given a data matrix
D ∈ Rn×d and the number of clusters r, the task is to find clusters {C1, . . . , Cr} ∈ Pn which
create a partition of {1, . . . , n}, minimizing the distance between points within clusters:

min
{C1,...,Cr}∈Pn

Dist(C1, . . . , Cr) =
r∑

s=1

1

|Cs|
∑
j,i∈Cs

‖Dj· −Di·‖2 (1)

Theorem 1 (k-means centroid objective). The k-means objective in Eq. (1) is equivalent to
the following objective:

min
r∑

s=1

∑
i∈Cs

‖Di· −X>·s‖2 s.t. X·s =
1

|Cs|
∑
i∈Cs

D>i· , {C1, . . . , Cr} ∈ Pn (2)

Proof. The objective function in Eq. (1) returning the average distance of points within one
cluster can be transformed as follows:

Dist(C1, . . . , Cr) =
r∑

s=1

1

|Cs|
∑
j∈Cs

∑
i∈Cs

‖Di· −Dj·‖2

=
r∑

s=1

1

|Cs|
∑
j∈Cs

∑
i∈Cs

(
‖Di·‖2 − 2Di·D

>
j· + ‖Dj·‖2

)
(binomial formula)

=
r∑

s=1

(
1

|Cs|
∑
j∈Cs

∑
i∈Cs

‖Di·‖2 −
1

|Cs|
∑
j∈Cs

∑
i∈Cs

2Di·D
>
j· +

1

|Cs|
∑
j∈Cs

∑
i∈Cs

‖Dj·‖2
)

=
r∑

s=1

(∑
i∈Cs

‖Di·‖2 − 2
∑
i∈Cs

Di·
1

|Cs|
∑
j∈Cs

D>j· +
∑
j∈Cs

‖Dj·‖2
)

=
r∑

s=1

(
2
∑
i∈Cs

‖Di·‖2 − 2
∑
i∈Cs

Di·
1

|Cs|
∑
j∈Cs

D>j·

)

1



This transformation introduces the centroid to the objective, it is given by the term on the
right:

Dist(C1, . . . , Cr) = 2
r∑

s=1

(∑
i∈Cs

‖Di·‖2 −
∑
i∈Cs

Di·
1

|Cs|
∑
j∈Cs

D>j·︸ ︷︷ ︸
X·s

)

X·s is the centroid (the arithmetic mean position) of all points assigned to cluster Cs. We
rearrange the terms now, such that we can again apply the binomial formula for norms,
where the norm is used to measure the distance of a point in a cluster to the corresponding
centroid:

Dist(C1, . . . , Cr) = 2
r∑

s=1

(∑
i∈Cs

‖Di·‖2 −
∑
i∈Cs

Di·︸ ︷︷ ︸
|Cs|X>·s

1

|Cs|
∑
j∈Cs

D>j·︸ ︷︷ ︸
X·s︸ ︷︷ ︸∑

i∈Cs‖X·s‖
2

)

= 2
r∑

s=1

∑
i∈Cs

(
‖Di·‖2 − 2Di·X·s + ‖X·s‖2

)
= 2

r∑
s=1

∑
i∈Cs

‖Di· −X>·s‖2 (binomial formula)

The step from the first to the second equation follows by adding and subtracting the term∑
i∈Cs‖X·s‖

2 =
∑

i∈Cs Di·X·s.

Theorem 2 (k-means MF objective). The k- means objective in Eq. (1) is equivalent to

min
Y

RSS(X, Y ) = ‖D − Y X>‖2 s.t. Y ∈ 1n×r, X = D>Y (Y >Y )−1

Proof. The matrix Y is a cluster-indicator matrix, indicating a partition of the n data points
into r sets. For every data point with index i ∈ {1, . . . , n}, there exists one cluster index
si, such that Yisi = 1 and Yis = 0 for s 6= si (point i is assigned to cluster si). Using this
notation, the objective function in Eq. (2), returning the distance of every point to its cluster
centroid, is equal to

r∑
s=1

∑
i∈Cs

‖Di· −X>·s‖2 =
n∑

i=1

r∑
s=1

Yis‖Di· −X>·s‖2 (use indicator matrix)

=
n∑

i=1

‖Di· −X>·si‖
2 (only Yisi = 1)

=
n∑

i=1

∥∥∥∥∥Di· −
r∑

s=1

YisX
>
·s

∥∥∥∥∥
2

(only Yisi = 1)

=

∥∥∥∥∥D −
r∑

s=1

Y·sX
>
·s

∥∥∥∥∥
2

(3)

= ‖D − Y X>‖2 (outer product def. matrix product).
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Eq. (3) uses the composition of the squared Frobenius norm as a sum of the squared Euclidean
vector norm over all rows. We have shown this connection in the math PDF for the regression
lecture.

2 Exercises

1. Compute a 2-means clustering on the movie rating matrix from the lecture step by step:

D =


5 3 1 1
3 1 5 3
2 1 5 3
4 3 4 2
5 5 3 1
3 1 5 3

 .

You can use as initialization the centroids

X>0 =

(
5 3 1 1
3 1 5 3

)
.

Solution: In the first step, we assign every point to the cluster having the closest
centroid. That is, we check, for every data point Dj· if ‖X·1 −Dj·‖2 < ‖X·2 −Dj·‖2.
If the answer is yes, then we set Yj1 = 1 and Yj2 = 0. Otherwise, we do it the other
way round: Yj1 = 0 and Yj2 = 1. This yields the cluster assignment matrix:

Y0 =


1 0
0 1
0 1
0 1
1 0
0 1

 .

Now we update the centroids and compute the mean value of the data points which
are in one cluster. For example, the first data point is the only point which is assigned
to the first cluster, hence the new centroid of the first cluster will be that one point.
The centroid of the second cluster is the mean of all remaining data points.

X>1 =

(
5 4 2 1
3 1.5 4.8 2.8

)
.
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Now we update again the cluster assignments and get

Y1 =


1 0
0 1
0 1
0 1
1 0
0 1

 .

Since Y1 = Y0, we have converged and we get the clustering identified by the matrices
X1 and Y1.

2. Show that for Y ∈ 1n×r we have

Y >Y =

|Y·1| 0
. . .

0 |Y·r|

 .

Solution: The non-diagonal entries (Y >Y )st for 1 ≤ s 6= t ≤ r are equal to zero due
to the constraint that there is only one nonzero entry in every row of Y . We have:

(Y >Y )st = Y >·s Y·t =
n∑

i=1

YisYit = 0,

since at most one of the entries Yis or Yit is equal to one, and the other has to be
equal to zero.

The diagonal entries of Y >Y are equal to

(Y >Y )ss = Y >·s Y·s =
n∑

i=1

YisYis =
n∑

i=1

Yis = |Cs|.

Since Y is a binary matrix, we have Y 2
is = Yis and as a consequence we also have

‖Y·s‖2 = |Y·s|. The column vector Y·s contains as many ones as there are points
assigned to cluster s, hence we get the result as outlined in the equation above.

3 Recommended Literature

As always, the best exercise is to go through the lecture and see if you can follow the steps
with pen and paper. If you feel like reading though, you can have a look at the following
material:
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Friedman, Hastie, and Tibshirani. The elements of statistical learn-
ing. 2001.

Here, the procedure of k-means is introduced for general (not necessarily Euclidean) dis-
tances. Note, that the objective of k-means is here a bit different, the distances of points
within one cluster are not averaged!

14.3 Cluster Analysis

14.3.1 Proximity Matrices (This sets the stage for next lecture already)

14.3.2 Dissimilarities Based on Attributes

14.3.3 Object Dissimilarity

14.3.5 Combinatorial Algorithms

14.3.6 k-means

Linear Algebra and Optimization for Machine Learning by Charu
C. Aggarwal

4.10.2 Block Coordinate Descent

4.10.3 K-Means as Block Coordinate Descent
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