
Proofs, Exercises and Literature - Regularization in
Regression

1 Proofs
1.1 Deriving the Regression Solution if X⊤X is not Invertible
The global minimizers β to the linear regression problem with design matrix X are given by

{β ∈ Rp | X⊤Xβ = X⊤y}. (1)

If the matrix X⊤X is invertible, then we can solve the system of linear equations directly
and get

β = (X⊤X)−1X⊤y.

However, if the matrix X⊤X is not invertible, then there are infinitely many solutions of β.
We discuss now how we can derive the solution vectors β in this case.

The (p×p) matrix X⊤X is not invertible if this matrix has r < p nonzero singular values.
The singular values of X⊤X are specified by the SVD of X = UΣV ⊤, we have

X⊤X = V Σ⊤ U⊤U︸ ︷︷ ︸
=I

ΣV ⊤ = V Σ⊤ΣV ⊤.

The singular value decomposition is uniquely defined and the decomposition V Σ⊤ΣV ⊤ sat-
isfies the requirements for the singular value decomposition of X⊤X. Hence, the singular
values of X⊤X are given by the diagonal elements of the matrix Σ⊤Σ, which can be decom-
posed into an invertible part Σ2

r and a non-invertible part:

Σ⊤Σ =


σ2
1 . . . 0
... . . . ...
0 . . . σ2

r

0

0 0

 =

(
Σ2

r 0
0 0

)
. (2)

Given the singular value decomposition of X and X⊤X, we can try to solve Eq. (1) for β:

X⊤Xβ = X⊤y ⇔ V Σ⊤ΣV ⊤β = V Σ⊤U⊤y ⇔ Σ⊤ΣV ⊤β = Σ⊤U⊤y, (3)
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where the last equality follows from multiplying with V ⊤ from the left. If we want to solve
for β, then the next step would be to multiply with the inverse of the matrix Σ⊤Σ. However,
this is not possible since only r < p singular values are nonzero. We set

β = V AΣ⊤U⊤y, (4)

for a p× p matrix A, which we will specify later. Substituting this definition of β in Eq. (3)
yields

Σ⊤ΣV ⊤(V AΣU⊤y) = Σ⊤U⊤y

⇔ (Σ⊤Σ)AΣ⊤U⊤y = Σ⊤U⊤y.

That is, if the matrix A satisfies (Σ⊤Σ)AΣ⊤ = Σ⊤, then the vector β in Eq. (4) is a global
minimizer of the regression objective. We specify now for which matrices A this equality
is satisfied. Therefore, we write A as a collection of four sub-matrices: A1 ∈ Rr×r, A2 ∈
Rr×(p−r), A3 ∈ R(p−r)×r and A4 ∈ R(p−r)×(p−r):

(Σ⊤Σ)AΣ⊤ = p

{(
Σ2

r 0
0 0

)
︸ ︷︷ ︸

p

(
A1 A2

A3 A4

)
︸ ︷︷ ︸

p

(
Σr 0
0 0

)
︸ ︷︷ ︸

n

=

(
Σ2

rA1 Σ2
rA2

0 0

)(
Σr 0
0 0

)
=

(
Σ2

rA1Σr 0
0 0

)
.

We can see that the matrix above equals Σ⊤ if A1 = Σ−2
r :

(Σ⊤Σ)AΣ⊤ = Σ⊤ ⇔ A1 = Σ−2
r .

As a result, we get for any p× p matrix of the form

A =

(
Σ−2

r A2

A3 A4

)
a global minimizer β in the form of Eq. (4). In fact, only the sub-matrix A3 has an impact
on the definition of β, since

β = V AΣ⊤U⊤y

= V

(
Σ−2

r A2

A3 A4

)(
Σr 0
0 0

)
U⊤y

= V

(
Σ−1

r 0
A3Σ 0

)
U⊤y.

Hence, the set of all global minimizers is defined by the solutions β given in Eq. (4) for a
matrix A of the form

A =

(
Σ−2

r 0
A3 0

)
,

where A3 ∈ R(p−r)×r, and the last p− r columns of A are equal to zero.
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1.2 The Minimizer of Ridge Regression is Unique
The uniqueness of the regression vector β for ridge regression follows from the fact that the
matrix X⊤X + λI is invertible for any λ > 0. To show this, we use the SVD of X = UΣV ⊤.
We get then

X⊤X + λI = V Σ⊤ U⊤U︸ ︷︷ ︸
=I

ΣV ⊤ + λ I︸︷︷︸
=V V ⊤

= V Σ⊤ΣV ⊤ + λV V ⊤

= V (Σ⊤Σ + λI)V ⊤.

The last equation denotes the SVD of the matrix X⊤X+λI. The singular values of X⊤X+λI
are denoted by the elements on the diagonal of the diagonal matrix Σ⊤Σ + λI. Since these
singular values are all nonzero (they are all larger than equal to λ > 0), the matrix X⊤X+λI
is invertible.

2 Exercises
1. Show that the Lp-’norm’ is not a real norm for p = 1/2.

3 Recommended Literature
As always, the best exercise is to go through the lecture and see if you can follow the steps
(maybe with pen and paper). If you feel like reading, I can recommend the following two
chapters from the recommended books:

Bishop. Pattern recognition and machine learning. 2006.
3.1.4 Regularized Least Squares

Friedman, Hastie, and Tibshirani. The elements of statistical learn-
ing. 2001.
3.4 Shrinkage Methods

3.4.1 Ridge Regression
3.4.2 The Lasso
3.4.3 Discussion: Subset Selection, Ridge Regression and the Lasso

Linear Algebra and Optimization for Machine Learning by Charu
C. Aggarwal
5.8.1 The Subgradient Method
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5.8.1.1 Application: L1-Regularization
5.8.1.2 Combining Subgradients with Coordinate Descent
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