
Proofs, Exercises and Literature - Regression

1 Proofs
Lemma 1. The squared L2-norm f : Rd → R, f(x) = ∥x∥2 is convex.

Proof. Let x1,x2 ∈ Rd and α ∈ [0, 1]. Then we have to show that

∥αx1 + (1− α)x2∥2 ≤ α∥x1∥2 + (1− α)∥x2∥2 (1)

We apply the binomial formula for the squared L2-norm, which derives directly from the definition of the
squared L2-norm by an inner product (see linear algebra lecture). Then we have:

∥αx1 + (1− α)x2∥2 = ∥αx1∥2 + 2α(1− α)x1x2 + ∥(1− α)x2∥2

= |α|2∥x1∥2 + 2α(1− α)x1x2 + |1− α|2∥x2∥2 (homogenity of the norm)
= α2∥x1∥2 + 2α(1− α)x1x2 + (1− α)2∥x2∥2, (2)

where the last equation derives from the fact that the squared absolute value of a real value is equal to the
squared real value.

What is standing above, is not yet what we want, and it is difficult to see which step has to be taken next
to derive the Inequality (1). Hence, we apply a trick. Instead of showing that Eq. (1) holds as it stands, we
show that an equivalent inequality holds:

∥αx1 + (1− α)x2∥2 − α∥x1∥2 − (1− α)∥x2∥2 ≤ 0

We substitute now the result of Eq. (2) into the term on the left of the inequality above:

∥αx1 + (1− α)x2∥2 − α∥x1∥2 − (1− α)∥x2∥2

= α2∥x1∥2 + 2α(1− α)x1x2 + (1− α)2∥x2∥2 − α∥x1∥2 − (1− α)∥x2∥2

= −α(1− α)∥x1∥2 + 2α(1− α)x1x2 − (1− α)(1− 1 + α)∥x2∥2

= −α(1− α)∥x1 − x2∥2 (binomial formula)
≤ 0

This concludes what we wanted to show.

2 Exercises
1. Imagine you have a dataset which consists of three datapoints (of course this is super unrealistic but if

we want to go through regression step by step, then we need a really small example). The data is listed
in the following table:

D x1 y
1 5 2
2 3 5
3 1 3
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In this exercise, you are asked to fit a regression function for specified function classes. That is, you will
have to create the design matrix and compute the global optimizer(s) β of the regression objective as
presented in the lecture. Plot the regression function.
(a) Fit an affine function to the data

f(x) = β1x+ β0.

(b) Fit a polynomial regression function of degree k = 2 to the data

f(x) = β2x
2 + β1x+ β0.

(c) Fit a sum of three Gaussians to the data:

f(x) = β1 exp(−(x− 5)2) + β2 exp(−(x− 3)2) + β3 exp(−(x− 1)2).

The mean values µ, which have to be specified when we choose a Gaussian basis function, are here
equal to the three given feature values in the data. This strategy is also often used in practice.

3 Recommended Literature
As always, the best exercise is to go through the lecture and see if you can follow the steps (maybe with
pen and paper). If you feel like reading, I can recommend the following two chapters from the recommended
books:

Bishop. Pattern recognition and machine learning. 2006.
3.1 Linear Basis Function Models

3.1.1 Maximum Likelihood and Least Squares

3.2 Bias-Variance Decomposition

Friedman, Hastie, and Tibshirani. The elements of statistical learning. 2001.
2.6 Statistical Models, Supervised Learning and Function Approximations

2.6.1 A Statistical Model for the Joint Distribution Pr(X,Y )

2.6.2 Supervised Learning
2.6.3 Function Approximation

2.9 Model Selection and Bias-Variance Tradeoff

3 Linear Methods for Regression

3.1 Introduction
3.2 Linear Regression Models and Least Squares
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