
Proofs, Exercises and Literature - Recommender
Systems and Dimensionality Reduction

1 Proofs

1.1 MF is Nonconvex

Theorem 1 (MF is Nonconvex). The rank-r matrix factorization problem, defined for a
matrix D ∈ Rn×d 6= 0 and a rank 1 ≤ r < min{n, d} as

min
X,Y

RSS(X, Y ) = ‖D − Y X>‖2 s.t. X ∈ Rd×r, Y ∈ Rn×r

is a nonconvex optimization problem.

Proof. We show that the RSS(X, Y ) is not a convex function. Therefore we assume first
that the RSS(X, Y ) is a convex function and show then that this assumption leads to a
contradiction. Assuming that the RSS(X, Y ) is a convex function means that the following
inequality has to hold for all matrices X1, X2 ∈ Rd×r and Y1, Y2 ∈ Rn×r and α ∈ [0, 1]:

RSS(αX1 + (1− α)X2, αY1 + (1− α)Y2) ≤ αRSS(X1, Y1) + (1− α)RSS(X2, Y2). (1)

For any global minimizer (X, Y ) of the rank-r MF problem, (γX, 1
γ
Y ) is also a global min-

imizer for γ 6= 0. However, for α = 1/2 we have that the convex combination attains a
function value of

RSS(αX + (1− α)(γX), αY + (1− α)( 1
γ
Y )) = RSS

(
1
2
X + 1

2
(γX), 1

2
Y + 1

2
( 1
γ
Y )
)

= RSS
(

1
2
(1 + γ)X, 1

2
(1 + 1

γ
)Y
)

= ‖D − 1
4
(1 + γ)(1 + 1

γ
)Y X>‖2.

We observe that the approximation error in the last equation goes to infinity if γ → ∞.
Hence, there exists multiple γ > 0 for which the RSS of the convex combination of two
global miinimizers is larger than zero. This contradicts the assumption that the RSS(X, Y )
is convex.
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1.2 PCA

Given a dataset, represented by the n×d matrix D of n observations of d features F1, . . . , Fd,
we define a new feature:

Fd+1 =
d∑

k=1

αkFk.

We have n observations of this new feature, given by

D·d+1 =
d∑

k=1

αkD·k = Dα ∈ Rn (2)

we compute the sample mean as the following matrix-vector product

µFd+1
=

1

n

n∑
i=1

Did+1 (Definition sample mean)

=
1

n
1>D·d+1 (1 ∈ {1}n is constant one vector)

=
1

n
1>Dα (Eq. (2))

=
(
µF1 . . . µFd

)
α (Computation of mean)

= µ>F α, (3)

where the vector µF gathers all the sample mean values for the given d features. We compute
now the sample variance as

σ2
Fd+1

=
1

n

n∑
i=1

(Did+1 − µFd+1
)2 (Definition sample variance)

=
1

n
‖D·d+1 − 1µFd+1

‖2 (Definition Euclidean norm, 1 ∈ {1}n)

=
1

n

∥∥Dα− 1µ>F α
∥∥2 (Eq. (3))

=
1

n

∥∥(D − 1µ>F
)
α
∥∥2

We are interested in the direction of maximal variance, so we can restrict the length of vector
α: ‖α‖ = 1
The direction of largest variance α is the solution to the following optimization problem:

max
‖α‖=1

σ2
d+1 = max

‖α‖=1

1

n

∥∥(D − 1µ>F
)
α
∥∥2

= max
‖α‖=1

1

n
α>
(
D − 1µ>F

)> (
D − 1µ>F

)
α

= max
‖α‖=1

α>C>Cα

n
,

where C = D − 1µ>F is the centered data matrix.
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2 Exercises

2.1 SVD

1. Let’s have a look at a very simple movie ratings matrix of six users and four movies:

D =


5 5 1 1
5 5 1 1
5 5 1 1
1 1 5 5
1 1 5 5
5 5 5 5


(a) Which patterns of movie preferences can you detect in the matrix D?

(b) Can you denote a rank-2 factorization of D which reflects the assignment of users
to the patterns you found?

(c) Compute a rank-2 truncated SVD of D. Do the movie patterns denoted by the
SVD solution reflect the patterns you identified?

Solution: This matrix has two obvious movie patterns. The first pattern is (5, 5, 1, 1),
indicating that movie 1 and 2 is liked (rated with 5/5 stars) and the last two movies
are not liked (rated with 1/5 stars). The second pattern is (1, 1, 5, 5), indicating that
the first two movies are not liked and the last two are liked. The last user likes all
movies, which could be understood like he belongs to both patterns. In fact, we can
write the matrix D as the following rank-2 MF:

D =


5 5 1 1
5 5 1 1
5 5 1 1
1 1 5 5
1 1 5 5
5 5 5 5

 =


1 0
1 0
1 0
0 1
0 1
1 1


(

5 5 1 1
1 1 5 5

)
. (4)

This particular factorization will yet bot be found by SVD, since the rows in the
second factor matrix are not orthogonal.

The truncated SVD yields:

U·{1,2}Σ{1,2}{1,2}V
>
·{1,2} =


0.4 −0.4
0.4 −0.4
0.4 −0.4
0.3 0.5
0.3 0.5
0.6 0.1


(

16.8 0
0 8.8

)(
0.6 0.6 0.4 0.4
−0.4 −0.4 0.6 0.6

)
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We see that the decomposition of SVD is quite different from the one in Eq. (4). The
first pattern V·1 indicates more general information of the data, like movie popularity.
Since there are more users who like movies 1 and 2 than users who like movies 3 and
4, movies 1 and 2 get a slightly higher score of 0.6 (vs. 0.4) in the first pattern V·1.
The second pattern V·2 indicates the duality in taste of movies 1,2 and 3,4 by the
sign (-0.4 vs. 0.6). Likewise, we recognize the difference between users in the matrix
U . There are three user patterns: (0.4,−0.4), (0.3, 0.5) and 0.6, 0.1.

2. Consider the movie recommendation matrix from the lecture, whose missing values are
imputed with the mean value of µ = 3:

D =


5 µ 1 1
µ 1 5 µ
2 1 5 3
4 µ 4 2
5 5 µ 1
µ 1 5 3


In the example of the lecture, we have used a rank of 2. Try using a rank of 1, 3 and 4
and evaluate the obtained recommendations. Which rank would you choose?

Solution: For this example, a rank of 2 is indeed the best fit. The rank-1 truncated
SVD is given as follows:

U1Σ1V
>
1 =


2.9 2.0 3.2 1.8
3.3 2.2 3.6 2.0
3.3 2.2 3.6 2.0
3.8 2.6 4.2 2.3
4.0 2.8 4.4 2.5
3.6 2.5 4.0 2.2

 .

This factorization is not able to approximate the known movie preferences, and hence,
we can not derive suitable predictions from this model. The rank 2 factorization is
known from the lecture and can be used to give recommendations:

U2Σ2V
>
2 =


4.4 3.7 1.4 0.6
2.1 0.9 5.0 2.9
2.1 0.9 5.0 2.9
4.1 2.9 3.9 2.1
5.5 4.4 2.7 1.3
2.7 1.4 5.1 3.0

 .
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The rank of 3 and 4 factorizations of the truncated SVD are adapting too well to
the data. We have

U3Σ3V
>
3 =


5.0 3.0 1.0 0.9
2.0 1.0 5.0 2.9
2.0 1.0 5.0 2.9
4.0 3.0 4.0 2.1
5.0 5.0 3.0 1.0
3.0 1.1 4.9 3.1



U4Σ4V
>
4 =


5.0 3.0 1.0 1.0
2.0 1.0 5.0 3.0
2.0 1.0 5.0 3.0
4.0 3.0 4.0 2.0
5.0 5.0 3.0 1.0
3.0 1.0 5.0 3.0

 .

The imputed mean values are almost perfectly approximated and can this factoriza-
tion can hence not be used to provide recommendations.

3. Show that the minimum approximation error of a rank-r matrix factorization of the data
D ∈ Rn×d is equal to the sum of the min{n, d} − r smallest singular values of D:

σ2
r+1 + . . .+ σ2

min{n,d} = min
X,Y
‖D − Y X>‖2 s.t. X ∈ Rd×r, Y ∈ Rn×r.

Solution: We have seen in the lecture that the global minimizers X and Y of the
rank-r matrix factorization problem satisfy

Y X> = U·RΣRRV
>
·R,

where D = UΣV > is the singular value decomposition of D and R = {1, . . . , r}. We
define the matrix

Σ0 =

(
ΣRR 0
0 0

)
∈ Rn×d.

That is, we create the matrix Σ0 by attaching n − r constant-zero rows and d − r
constant-zero columns. Then, we can write

Y X> = UΣ0V
>.
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Due to the orthogonal invariance of the Frobenius norm, we have

‖D − Y X>‖2 = ‖UΣV > − UΣ0V
>‖2

= ‖U>(UΣV > − UΣ0V
>)V ‖2

= ‖Σ− Σ0‖2

= σ2
r+1 + . . .+ σ2

min{n,d}

2.2 PCA

1. Show that the constraint Z>Z = I for Z ∈ Rn×r, r < n which is imposed for the
objective of PCA implies that Z has orthogonal columns which all have a Euclidean
norm of one.

Solution: The constraint Z>Z = I implies that the entry s, t for 1 ≤ s, t ≤ r of
Z>Z is equal to zero if s 6= t and equal to one otherwise. We have

Z>Z = I

⇔ (Z>Z)s,t = Z>·sZ·t =

{
0 if s 6= t

1 otherwise

Z>·sZ·t = 0 for 1 ≤ s 6= t ≤ r (5)

Z>·sZ·s = ‖Z·s‖2 = 1 for 1 ≤ s ≤ r (6)

From Eq. (7) follows that the columns of Z are orthogonal and from Eq. (8) follows
that the columns of Z have a Euclidean norm of one.

2. We define a new feature F3 = F1 + 2F2, given the following data:

F1 F2
2 -2
0 3
1 -2
1 1

(a) Compute the sample variance of the new feature by computing the new feature
values and then computing the variance of these values.

(b) Compute the sample variance of the new feature by means of the formula derived
in the lecture: σ2

F3
= 1

n
‖(D − 1µ>F )α‖2
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(c) Plot the data points and the vector α which defines the new feature F3. Does
α indicate a direction of high or low sample variance in the data? How can you
compute the variance in the direction of α?

(d) Compute the variance and direction of maximum variance in the data.

Solution: (a) We compute the new feature values, the mean µ3, and the centered
feature values F3 − µ3:

F1 F2 F3 F3 − µ3

2 -2 -2 -3
0 3 6 5
1 -2 -3 -4
1 1 3 2

µ3 = 1

The sample variance of the new feature F3 is then given as the mean value of the
samples (F3 − µ3)

2, that is, we compute

σ2
F3

= (32 + 52 + 42 + 22)/4 = 13.5

(b) To compute the variance by means of the formula σ2
F3

= 1
n
‖(D − 1µ>F )α‖2, we

compute first the mean values of the features and then the centered data matrix
D − 1µF:

F1 F2 F1 − µ1 F2 − µ2
F3 − µ3 = F1 − µ1 +
2(F2 − µ2)

2 -2 1 -2 -3
0 3 -1 3 5
1 -2 0 -2 -4
1 1 0 1 2

µ 1 0 0 0 0

Now, the variance is given as the squared L2-norm of the samples F3 − µ3:

σ2
F3

= (32 + 52 + 42 + 22)/4 = 13.5

(c) We plot the data points and the vector α = (1, 2).
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The variance in the direction of α is not particularly high. Geometrically, the variance
would be given by projecting the points on α and then having a look how much
the projected samples spread. We can compute the variance by normalizing the
vector α̃ = α/‖α‖ = (1, 2)/

√
5 and then compute the sample variance of the feature

Fα̃ = α̃1F1 + α̃2F2:

σ2
F3

=
1

n
‖(D − 1µ>F )α̃‖2 = (32 + 52 + 42 + 22)/5/4 = 2.7

(d) We compute the direction of maximum variance in the data by the SVD of the cen-
tered data matrix (cf. notebook). The first right singular vector V·1 = (0.27,−0.96)
of the centered data matrix denotes the direction of maximum variance (the first
principle component) and the squared first singular value divided by the number of
samples denotes the variance σ2

FV·1
= 4.85 (all values are rounded to two decimal

points).

3. Given a data matrix D ∈ Rn×d, Show that every right singular vector V·k of the centered
data matrix C = D−1µ>F indicates a new feature FV·k = V1kF1+. . .+VdkFd whose sample
variance is given by the corresponding squared singular value divided by the number of
samples σ2

k/n.

Solution: We have derived in the lecture that the sample variance of a feature
defined by Fα = α1F1 + . . .+ αdFd is given by

σ2
Fα

=
1

n

∥∥(D − 1µ>F
)
α
∥∥2 =

1

n
‖Cα‖2 .

If we choose now α = V·k, and insert the singular value decomposition of C = UΣV >,
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then we get

σ2
FV·k

=
1

n
‖CV·k‖2

=
1

n

∥∥UΣV >V·k
∥∥2

=
1

n

∥∥ΣV >V·k
∥∥2 (orthogonal invariance)

=
1

n

∥∥∥∥∥∥∥∥∥∥∥
Σ


V >·1 V·k

...
V >·k V·k

...
V >·1 V·d



∥∥∥∥∥∥∥∥∥∥∥

2

=
1

n

∥∥∥∥∥∥∥∥∥∥∥
Σ


0
...
1
...
0



∥∥∥∥∥∥∥∥∥∥∥

2

=
1

n
σ2
k. (σk = Σkk)

4. Show that the constraint Z>Z = I for Z ∈ Rn×r, r < n which is imposed for the
objective of PCA implies that Z has orthogonal columns which all have a Euclidean
norm of one.

Solution: The constraint Z>Z = I implies that the entry s, t for 1 ≤ s, t ≤ r of
Z>Z is equal to zero if s 6= t and equal to one otherwise. We have

Z>Z = I

⇔ (Z>Z)s,t = Z>·sZ·t =

{
0 if s 6= t

1 otherwise

Z>·sZ·t = 0 for 1 ≤ s 6= t ≤ r (7)

Z>·sZ·s = ‖Z·s‖2 = 1 for 1 ≤ s ≤ r (8)

From Eq. (7) follows that the columns of Z are orthogonal and from Eq. (8) follows
that the columns of Z have a Euclidean norm of one.

3 Recommended Literature

Linear Algebra and Optimization for Machine Learning by Charu
C. Aggarwal

7.2 SVD: A Linear Algebra Perspective
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7.2.4 Truncated Singular Value Decomposition

7.2.5 Two Interpretations of SVD

7.2.6 Is Singular Value Decomposition Unique?

7.2.7 Two-Way Versus Three-Way Decompositions

7.4 Applications of Singular Value Decomposition

7.4.1 Dimensionality Reduction

8.3 Unconstrained Matrix Factorization

8.3.2 Applications to Recommender Systems
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