Proofs, Exercises and Literature - Recommender Systems and Dimensionality Reduction

1 Proofs

1.1 MF is Nonconvex

Theorem 1 (MF is Nonconvex). The rank-r matrix factorization problem, defined for a matrix $D \in \mathbb{R}^{n \times d} \neq \mathbf{0}$ and a rank $1 \leq r < \min\{n, d\}$ as

$$\min_{X,Y} RSS(X,Y) = \|D - YX^{\top}\|^2 \qquad s.t. \ X \in \mathbb{R}^{d \times r}, Y \in \mathbb{R}^{n \times r}$$

is a nonconvex optimization problem.

Proof. We show that the RSS(X, Y) is not a convex function. Therefore we assume first that the RSS(X, Y) is a convex function and show then that this assumption leads to a contradiction. Assuming that the RSS(X, Y) is a convex function means that the following inequality has to hold for all matrices $X_1, X_2 \in \mathbb{R}^{d \times r}$ and $Y_1, Y_2 \in \mathbb{R}^{n \times r}$ and $\alpha \in [0, 1]$:

$$RSS(\alpha X_1 + (1 - \alpha)X_2, \alpha Y_1 + (1 - \alpha)Y_2) \le \alpha RSS(X_1, Y_1) + (1 - \alpha)RSS(X_2, Y_2).$$
(1)

For any global minimizer (X, Y) of the rank-*r* MF problem, $(\gamma X, \frac{1}{\gamma}Y)$ is also a global minimizer for $\gamma \neq 0$. However, for $\alpha = 1/2$ we have that the convex combination attains a function value of

$$RSS(\alpha X + (1 - \alpha)(\gamma X), \alpha Y + (1 - \alpha)(\frac{1}{\gamma}Y)) = RSS\left(\frac{1}{2}X + \frac{1}{2}(\gamma X), \frac{1}{2}Y + \frac{1}{2}(\frac{1}{\gamma}Y)\right)$$
$$= RSS\left(\frac{1}{2}(1 + \gamma)X, \frac{1}{2}(1 + \frac{1}{\gamma})Y\right)$$
$$= \|D - \frac{1}{4}(1 + \gamma)(1 + \frac{1}{\gamma})YX^{\top}\|^{2}.$$

We observe that the approximation error in the last equation goes to infinity if $\gamma \to \infty$. Hence, there exists multiple $\gamma > 0$ for which the RSS of the convex combination of two global minimizers is larger than zero. This contradicts the assumption that the RSS(X, Y) is convex.

1.2 PCA

Given a dataset, represented by the $n \times d$ matrix D of n observations of d features F_1, \ldots, F_d , we define a new feature:

$$\mathbf{F}_{d+1} = \sum_{k=1}^{a} \alpha_k \mathbf{F}_k.$$

We have n observations of this new feature, given by

$$D_{\cdot d+1} = \sum_{k=1}^{d} \alpha_k D_{\cdot k} = D\boldsymbol{\alpha} \in \mathbb{R}^n$$
(2)

we compute the sample mean as the following matrix-vector product

$$\mu_{\mathbf{F}_{d+1}} = \frac{1}{n} \sum_{i=1}^{n} D_{id+1} \qquad \text{(Definition sample mean)}$$
$$= \frac{1}{n} \mathbf{1}^{\top} D_{\cdot d+1} \qquad (\mathbf{1} \in \{1\}^n \text{ is constant one vector})$$
$$= \frac{1}{n} \mathbf{1}^{\top} D \boldsymbol{\alpha} \qquad (\text{Eq. (2)})$$
$$= (\mu_{\mathbf{F}_1} \dots \mu_{\mathbf{F}_d}) \boldsymbol{\alpha} \qquad (\text{Computation of mean})$$
$$= \boldsymbol{\mu}_{\mathbf{F}}^{\top} \boldsymbol{\alpha}, \qquad (3)$$

where the vector $\mu_{\rm F}$ gathers all the sample mean values for the given d features. We compute now the sample variance as

$$\sigma_{\mathbf{F}_{d+1}}^2 = \frac{1}{n} \sum_{i=1}^n (D_{id+1} - \mu_{\mathbf{F}_{d+1}})^2 \qquad \text{(Definition sample variance)}$$
$$= \frac{1}{n} \|D_{\cdot d+1} - \mathbf{1}\mu_{\mathbf{F}_{d+1}}\|^2 \qquad \text{(Definition Euclidean norm, } \mathbf{1} \in \{1\}^n)$$
$$= \frac{1}{n} \|D\boldsymbol{\alpha} - \mathbf{1}\mu_{\mathbf{F}}^\top \boldsymbol{\alpha}\|^2 \qquad \text{(Eq. (3))}$$
$$= \frac{1}{n} \|(D - \mathbf{1}\mu_{\mathbf{F}}^\top) \boldsymbol{\alpha}\|^2$$

We are interested in the direction of maximal variance, so we can restrict the length of vector $\boldsymbol{\alpha}$: $\|\boldsymbol{\alpha}\| = 1$

The direction of largest variance α is the solution to the following optimization problem:

$$\begin{aligned} \max_{\|\boldsymbol{\alpha}\|=1} \sigma_{d+1}^2 &= \max_{\|\boldsymbol{\alpha}\|=1} \frac{1}{n} \left\| \left(D - \mathbf{1} \boldsymbol{\mu}_{\mathsf{F}}^\top \right) \boldsymbol{\alpha} \right\|^2 \\ &= \max_{\|\boldsymbol{\alpha}\|=1} \frac{1}{n} \boldsymbol{\alpha}^\top \left(D - \mathbf{1} \boldsymbol{\mu}_{\mathsf{F}}^\top \right)^\top \left(D - \mathbf{1} \boldsymbol{\mu}_{\mathsf{F}}^\top \right) \boldsymbol{\alpha} \\ &= \max_{\|\boldsymbol{\alpha}\|=1} \frac{\boldsymbol{\alpha}^\top C^\top C \boldsymbol{\alpha}}{n}, \end{aligned}$$

where $C = D - \mathbf{1} \boldsymbol{\mu}_{\mathsf{F}}^{\top}$ is the centered data matrix.

2 Exercises

2.1 SVD

1. Let's have a look at a very simple movie ratings matrix of six users and four movies:

$$D = \begin{pmatrix} 5 & 5 & 1 & 1 \\ 5 & 5 & 1 & 1 \\ 5 & 5 & 1 & 1 \\ 1 & 1 & 5 & 5 \\ 1 & 1 & 5 & 5 \\ 5 & 5 & 5 & 5 \end{pmatrix}$$

- (a) Which patterns of movie preferences can you detect in the matrix D?
- (b) Can you denote a rank-2 factorization of D which reflects the assignment of users to the patterns you found?
- (c) Compute a rank-2 truncated SVD of D. Do the movie patterns denoted by the SVD solution reflect the patterns you identified?
- 2. Consider the movie recommendation matrix from the lecture, whose missing values are imputed with the mean value of $\mu = 3$:

$$D = \begin{pmatrix} 5 & \mu & 1 & 1 \\ \mu & 1 & 5 & \mu \\ 2 & 1 & 5 & 3 \\ 4 & \mu & 4 & 2 \\ 5 & 5 & \mu & 1 \\ \mu & 1 & 5 & 3 \end{pmatrix}$$

In the example of the lecture, we have used a rank of 2. Try using a rank of 1, 3 and 4 and evaluate the obtained recommendations. Which rank would you choose?

3. Show that the minimum approximation error of a rank-r matrix factorization of the data $D \in \mathbb{R}^{n \times d}$ is equal to the sum of the min $\{n, d\} - r$ smallest singular values of D:

$$\sigma_{r+1}^2 + \ldots + \sigma_{\min\{n,d\}}^2 = \min_{X,Y} \|D - YX^\top\|^2 \quad \text{s.t. } X \in \mathbb{R}^{d \times r}, Y \in \mathbb{R}^{n \times r}$$

2.2 PCA

- 1. Show that the constraint $Z^{\top}Z = I$ for $Z \in \mathbb{R}^{n \times r}$, r < n which is imposed for the objective of PCA implies that Z has orthogonal columns which all have a Euclidean norm of one.
- 2. We define a new feature $F_3 = F_1 + 2F_2$, given the following data:

F_1	F_2
2	-2
0	3
1	-2
1	1

- (a) Compute the sample variance of the new feature by computing the new feature values and then computing the variance of these values.
- (b) Compute the sample variance of the new feature by means of the formula derived in the lecture: $\sigma_{F_3}^2 = \frac{1}{n} ||(D \mathbf{1}\mu_F^\top)\alpha||^2$
- (c) Plot the data points and the vector α which defines the new feature F_3 . Does α indicate a direction of high or low sample variance in the data? How can you compute the variance in the direction of α ?
- (d) Compute the variance and direction of maximum variance in the data.
- 3. Given a data matrix $D \in \mathbb{R}^{n \times d}$, Show that every right singular vector $V_{\cdot k}$ of the centered data matrix $C = D \mathbf{1} \boldsymbol{\mu}_{\mathsf{F}}^{\top}$ indicates a new feature $\mathbf{F}_{V_{\cdot k}} = V_{1k}\mathbf{F}_1 + \ldots + V_{dk}\mathbf{F}_d$ whose sample variance is given by the corresponding squared singular value divided by the number of samples σ_k^2/n .
- 4. Show that the constraint $Z^{\top}Z = I$ for $Z \in \mathbb{R}^{n \times r}$, r < n which is imposed for the objective of PCA implies that Z has orthogonal columns which all have a Euclidean norm of one.

3 Recommended Literature

Linear Algebra and Optimization for Machine Learning by Charu C. Aggarwal

7.2 SVD: A Linear Algebra Perspective

7.2.4 Truncated Singular Value Decomposition

 $7.2.5~{\rm Two~Interpretations}$ of SVD

7.2.6 Is Singular Value Decomposition Unique?

7.2.7 Two-Way Versus Three-Way Decompositions

7.4 Applications of Singular Value Decomposition

 $\textbf{7.4.1} \ \text{Dimensionality Reduction}$

8.3 Unconstrained Matrix Factorization

8.3.2 Applications to Recommender Systems