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Informal Problem Description
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Recommending Movies like Netflix does
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Who Would You Recommend What and Why?
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Who Would You Recommend What and Why?
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What is this Color Scheme in Math?

= +
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What is this Color Scheme in Math?

= +
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What is this Color Scheme in Math? A Matrix Product!

=
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2

Derive the Formal Problem
Definition
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The Rank-r Matrix Factorization Problem

Given: a data matrix D ∈ Rn×d and a rank r < min{n, d}.

Find: matrices X ∈ Rd×r and Y ∈ Rn×r whose product
approximates the data matrix:

min
X ,Y
‖D − YX>‖2 s.t. X ∈ Rd×r ,Y ∈ Rn×r
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The Rank-r MF Problem is Nonconvex

Theorem (MF is Nonconvex)

The rank-r matrix factorization problem, defined for a matrix
D ∈ Rn×d 6= 0 and a rank 1 ≤ r < min{n, d} as

min
X ,Y

RSS(X ,Y ) = ‖D − YX>‖2 s.t. X ∈ Rd×r ,Y ∈ Rn×r

is a nonconvex optimization problem.

Proof: follows from the fact that the set of global minimizers is
not a convex set.
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Example: One-dimensional Matrix Factorization

(1, 1)

(0.5, 2)

(2, 0.5)

x1

x2
y

f (x1, x2) = (1− x1x2)2
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The rank-r MF problem is
nonconvex. Does that mean
that we can only determine

local minimizers?

No, the global minimum is
given by truncated SVD.
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Optimization
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Singular Value Decomposition

Theorem (SVD)

For every matrix D ∈ Rn×d there exist orthogonal matrices
U ∈ Rn×n,V ∈ Rd×d and Σ ∈ Rn×d such that

D = UΣV>, where

U>U = UU> = In,V
>V = VV> = Id

Σ is a rectangular diagonal matrix, Σ11 ≥ . . . ≥ Σll where
l = min{n, d}

The column vectors U·s and V·s are called left and right singular
vectors and the values σi = Σii are called singular values
(1 ≤ i ≤ l).
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Solutions to the Rank-r Matrix Factorization Problem

Theorem (Truncated SVD)

Let D = UΣV> ∈ Rn×d be the singular decomposition of D.
Then the global minimizers X and Y of the rank-r MF problem

min
X ,Y
‖D − YX>‖2s.t. X ∈ Rd×r ,Y ∈ Rn×r .

satisfy

YX> = U·RΣRRV
>
·R, where R = {1, . . . , r}.

The proof follows from the orthogonal invariance of the Frobenius
norm, yielding:

min
X ,Y
‖D − YX>‖2 = ‖Σ− U>YX>V ‖2
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Truncated SVD

The approximation D ≈ U·RΣRRV
>
·R is called truncated SVD.

D ≈ U·1 . . . U·rn

r

σ1
. . .

σr

V>·1
...

V>·r

d
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Ok, so the truncated SVD
solves the task to determine a
low-rank approximation of my

data.
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How can we apply the low-rank
approximation to provide

recommendations?
Fill missing values with the

mean value and compute the
truncated SVD.
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Matrix Completion for Recommender Systems

Movies

A B C D

Users

1 ?

2 ? ?

3

4 ?

5 ? ?

6 ?

Can we fill the ? with the rating which would be given by the user
if (s)he had seen the movie?



tuelogo

The Low-Rank MF Objective Matrix Completion PCA

Matrix Completion by SVD

Quick hack: replace the ? with the mean rating µ = 3.

Movies

A B C D

Users

1 5 µ 2 1

2 µ 1 5 µ

3 5 1 5 2

4 5 µ 5 3

5 5 5 µ µ

6 µ 4 5 3
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The Low-Rank Matrix Approximation Provides
Recommendations



5 µ 1 1
µ 1 5 µ
2 1 5 3
4 µ 4 2
5 5 µ 1
µ 1 5 3

 ≈


4.3 3.7 1.4 0.6
2.8 1.2 5.1 3.0
2.2 0.7 5.0 2.9
4.2 2.8 3.9 2.1
5.5 4.5 2.7 1.3
2.8 1.2 5.1 3.0



=



−0.3 0.5
−0.4 −0.4
−0.4 −0.4
−0.4 0.1
−0.5 0.5
−0.4 −0.4


(
−9.0 −5.8 −9.5 −5.3
2.6 3.3 −3.3 −2.2

)
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Interpretation of MF for Recommender Systems



5 µ 1 1
µ 1 5 µ
2 1 5 3
4 µ 4 2
5 5 µ 1
µ 1 5 3

 ≈


−0.3 0.5
−0.4 −0.4
−0.4 −0.4
−0.4 0.1
−0.5 0.5
−0.4 −0.4


(
−9.0 −5.8 −9.5 −5.3
2.6 3.3 −3.3 −2.2

)

Every user’s preferences are approximated by a linear combination
of the rows in the second matrix:(

5 µ 1 1
)
≈− 0.3 ·

(
−9.0 −5.8 −9.5 −5.3

)
+ 0.5 ·

(
2.6 3.3 −3.3 −2.2

)
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Matrix Completion by SVD



5 µ 1 1
µ 1 5 µ
2 1 5 3
4 µ 4 2
5 5 µ 1
µ 1 5 3

 ≈


4.3 3.7 1.4 0.6
2.8 1.2 5.1 3.0
2.2 0.7 5.0 2.9
4.2 2.8 3.9 2.1
5.5 4.5 2.7 1.3
2.8 1.2 5.1 3.0



=



−0.3 0.5
−0.4 −0.4
−0.4 −0.4
−0.4 0.1
−0.5 0.5
−0.4 −0.4


(
−9.0 −5.8 −9.5 −5.3
2.6 3.3 −3.3 −2.2

)

Question: What happens if observations are sparse?
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How can we prevent the
approximation to the inserted

mean values?
Adapt the objective to

approximate only observed
entries.
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Making 3rd place in the Netflix Price 2009

Given: a data matrix D ∈ Rn×d having observed entries Dik for
(i , k) ∈ O ⊆ {1, . . . , n} × {1, . . . d} the set of observed matrix
entries, and a rank r < min{n, d}.

Find: matrices X ∈ Rd×r and Y ∈ Rn×r whose product
approximates the data matrix only on observed entries, indicated
by 1O:

min
X ,Y
‖1O ◦ (D − YX>)‖2 =

∑
(i ,k)∈O

(Dik − Yi ·X
>
k· )

2

s.t. X ∈ Rd×r ,Y ∈ Rn×r

Optimization: Coordinate Descent
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Truncated SVD solves the

Rank-r Matrix Factorization Problem
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Now something different:

Finding low-dimensional
representations of the data by

truncated SVD
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Informal Problem Description



tuelogo

The Low-Rank MF Objective Matrix Completion PCA

Exploring the Iris Dataset

sepal length sepal width petal length petal width class

5.1 3.5 1.4 0.2 setosa
6.4 3.5 4.5 1.2 versicolor
5.9 3.0 5.0 1.8 virginica

...
...

...
...

...
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The First Step of Data Analysis: Visualization

sepal length
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We can also Generate our Own Features

F5 = F1 + F2

F6 = F3 + F4

F5

F
6

F1: sepal length

F2: sepal width

F3: petal length

F4: petal width
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How do we find good
low-dimensional views on our

data? How to create good new
features?

Find the linear combination of
features with highest variance.
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2

Derive the Formal Problem
Definition
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Defining a new Feature by a Linear Combination

Given the n × d data matrix D gathering n observations of d
features F1, . . . , Fd , we define a new feature:

Fd+1 =
d∑

k=1

αkFk .

We have n observations of this new feature, given by

D·d+1 =
d∑

k=1

αkD·k = Dα ∈ Rn
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The Sample Mean of the new Feature

Given observations D·d+1 = Dα of the new feature
Fd+1 =

∑d
k=1 αkFk , we compute the sample mean as

µFd+1
=

1

n

n∑
i=1

Did+1 = µ>F α, where µF =

µF1...
µFd


is the vector gathering all sample means for the d features.
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The Sample Variance of the new Feature

Given observations D·d+1 = Dα of the new feature

Fd+1 =
d∑

k=1

αkFk , with sample mean µFd+1
= µ>F α,

we compute the sample variance as

σ2Fd+1
=

1

n

n∑
i=1

(Did+1 − µFd+1
)2 =

1

n

∥∥∥(D − 1µ>F

)
α
∥∥∥2
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Sample Statistics of the new Feature

Given observations D·d+1 = Dα of the new feature

Fd+1 =
d∑

k=1

αkFk ,

the sample mean and variance is given by

µFd+1
= µ>F α, σ2Fd+1

=
1

n

∥∥∥(D − 1µ>F

)
α
∥∥∥2 .

We are interested in the direction of maximal variance, so we can
restrict the length of vector α: ‖α‖ = 1
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Finding the Direction of Maximal Sample Variance

The direction of largest variance α is the solution to the following
optimization problem:

max
‖α‖=1

σ2d+1 = max
‖α‖=1

1

n

∥∥∥(D − 1µ>F

)
α
∥∥∥2

= max
‖α‖=1

1

n
α>
(
D − 1µ>F

)> (
D − 1µ>F

)
α

= max
‖α‖=1

α>C>Cα

n
,

where C = D − 1µ>F is the centered data matrix.
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So, the direction of largest
variance is given by the

operator norm of the centered
data matrix.
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How can we derive a
low-dimensional representation

of the data?
Find the r orthogonal

directions of largest variance.
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The Principal Components Analysis Task

Given: a data matrix D ∈ Rn×d and a rank r .

Find: the r orthogonal direction of largest variance, given by the
columns Z·s which are the solution to the following optimization
problem:

max
Z

tr(Z>C>CZ ) s.t. Z ∈ Rn×r , Z>Z = I

where C = D − 1µ>F is the centered data matrix.
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3

Optimization
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What is the solution Z of the
objective of PCA?

The right singular vectors of C .
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SVD Solves the Objective of PCA

Theorem (Value of the Operator Norm)

Let C = UΣV> ∈ Rn×d be the SVD of the matrix C . The
solution of the optimization problem

max
Z

tr(Z>C>CZ ) s.t. Z ∈ Rn×r , Z>Z = I

is given by Z = V·R for R = {1, . . . r}.

Proof (sketch): Show that the objective above is equivalent to

min
Z
‖C>C − ZΣ2

RRZ
>‖2 s.t. Z ∈ Rn×r , Z>Z = I .
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Principal Components Analysis

1: function PCA(D, r)
2: C ← D − 1µ>F . Center the data matrix
3: (U·R,ΣRR,V·R)← TruncatedSVD(C , r)
4: return CV·R . the low-dimensional view on the data
5: end function

PCA can be implemented such that the novel data representation
is centered (returning CV·R) or not (returning DV·R).
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Two-Dimensional PCA on the Iris Dataset

PC1 = 0.36F1 − 0.08F2 + 0.85F3 + 0.36F4

PC2 = 0.66F1 + 0.73F2 − 0.17F3 − 0.07F4

PC1

P
C

2

F1: sepal length

F2: sepal width

F3: petal length

F4: petal width
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PCA enables

Dimensionality Reduction

Onto the Directions with

Maximal Variance
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