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Informal Problem Description
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The Low-Rank MF Objective
What is this Color Scheme in Math?
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What is this Color Scheme in Math? A Matrix Product!
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Derive the Formal Problem
Definition



The Low-Rank MF Objective
[ENEEEEES EEEESEEE}

The Rank-r Matrix Factorization Problem

Given: a data matrix D € R"™9 and a rank r < min{n, d}.

Find: matrices X € R9%" and Y € R™" whose product
approximates the data matrix:

min||D — yX T2 st. X € R Y € R™"
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The Rank-r MF Problem is Nonconvex

Theorem (MF is Nonconvex)

The rank-r matrix factorization problem, defined for a matrix
D € R™9 =0 and a rank 1 < r < min{n,d} as

minRSS(X, Y) = [|D - YXT|?2 st X €R Y e R™"

is a nonconvex optimization problem.

Proof: follows from the fact that the set of global minimizers is
not a convex set.
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Example: One-dimensional Matrix Factorization

X2

(052
< ( 7/ ) f(Xl,XQ) = (1 —X1X2)2

X (1’ 1)

(2/0/5)
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The rank-r MF problem is

nonconvex. Does that mean

that we can only determine
local minimizers?

No, the global minimum is
given by truncated SVD.
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Optimization
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Singular Value Decomposition

Theorem (SVD)

For every matrix D € R"™*9 there exist orthogonal matrices
UeR™ V ecRI* and ¥ € R™9 such that

D=UZVT, where
s U U=UUT=1,,VTV=WT=]

m X is a rectangular diagonal matrix, > 11 > ... > X where
= min{n,d}

The column vectors U.s and Vs are called left and right singular
vectors and the values o; = ¥ ;; are called singular values
(1<i<).
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Solutions to the Rank-r Matrix Factorization Problem

Theorem (Truncated SVD)

Let D= UXVT € R"™ be the singular decomposition of D.
Then the global minimizers X and Y of the rank-r MF problem

min||D — YXT|?s.t. X € RI¥TY € R™T,

satisfy

YXT = UpZrrVg, where R ={1,...,r}.

The proof follows from the orthogonal invariance of the Frobenius
norm, yielding:

min||D — YXT|2= |z - UTyXTV|?
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Truncated SVD

The approximation D = U.RZRR\/VTz is called truncated SVD.
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Ok, so the truncated SVD
solves the task to determine a
low-rank approximation of my

data.



How can we apply the low-rank
approximation to provide
recommendations?

Fill missing values with the
mean value and compute the

truncated SVD.
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Matrix Completion for Recommender Systems

1

2

3

4 | Serokdok ? FAokdok | Fok Aok
5 /

6

Users

Can we fill the 7 with the rating which would be given by the user
if (s)he had seen the movie?



Matrix Completion
Matrix Completion by SVD

Quick hack: replace the 7 with the mean rating 1 = 3.

Movies

A B C D

15| pu| 21

20 51 p

Users 315 > |2
4 15| pu| 5] 3
5155 | pu|p

6| p| 4|53
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The Low-Rank Matrix Approximation Provides

Recommendations

—_
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Matrix Completion
Interpretation of MF for Recommender Systems

5 p 1 1 —-0.3 05
w1 5 u —-04 —-04
2 1 5 3 —-04 —-04 -9.0 -58 —-95 -53
4 o 4 2 -04 0.1 <2.6 33 -33 —2.2>
5 5 1 —-0.5 0.5
w1 5 3 —-04 —-04

Every user's preferences are approximated by a linear combination
of the rows in the second matrix:

(5 p 1 1)~-03-(-9.0 —-58 —9.5 —5.3)
+05-(26 33 -33 —22)



Matrix Completion
Matrix Completion by SVD

5 4 1 1 43 37 14 06
w1 5 p 28 1.2 51 3.0
2 15 3| |22 07 50 29
4 1 4 2|7 42 28 39 21
5 5 u 1 55 45 2.7 1.3
p 1 5 3 28 1.2 51 3.0
-03 05
—0.4 —0.4
| -04 —-04]|(-90 -58 -95 -53
~|-04 01 <2.6 33 -33 —2.2>
—05 0.5

-04 —-04

Question: What happens if observations are sparse?



How can we prevent the
approximation to the inserted
mean values?

Adapt the objective to
approximate only observed
entries.




Making 3rd place in the Netflix Price 2009

Given: a data matrix D € R™9 having observed entries Dj. for
(i,k) € O C{1,...,n} x{1,...d} the set of observed matrix
entries, and a rank r < min{n, d}.

Find: matrices X € R¥*" and Y € R"*" whose product
approximates the data matrix only on observed entries, indicated
by 1o:

. TyV(12 V.Y )2
Q'g”ﬂoo(D—YX WP= > (Dw—YiX))
(i,k)eO
st. X e R Y e R™'

Optimization: Coordinate Descent




Truncated SVD solves the

Rank-r Matrix Factorization Problem
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Now something different:

Finding low-dimensional
representations of the data by

truncated SVD
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Informal Problem Description



Exploring the Iris Dataset

sepal length | sepal width | petal length | petal width | class
5.1 3.5 1.4 0.2 setosa
6.4 3.5 4.5 1.2 versicolor
5.9 3.0 5.0 1.8 virginica




The First Step of Data Analysis: Visualization
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Which views are good?




We can also Generate our Own Features

Feg

7 4y

Fs=F1 +F»
Fe =F3+Fy

m Fq:
m Fo:
m F3:

m Fy:

sepal length
sepal width
petal length
petal width
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How do we find good
low-dimensional views on our
data? How to create good new
features?

Find the linear combination of
features with highest variance.
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2

Derive the Formal Problem
Definition




Defining a new Feature by a Linear Combination

Given the n x d data matrix D gathering n observations of d
features Fy,...,Fy, we define a new feature:

d
Fgi1 = Z oF.
k=1

We have n observations of this new feature, given by

d
D.d+1 = ZakD.k = Da € R"
k=1




The Sample Mean of the new Feature

Given observations D.y41 = Do of the new feature
Fgi1 = ZZ:1 a,Fy, we compute the sample mean as

1 n ,LLFl
HFq = Z Dig11 = u;roz, where pup = :
i=1
HF,

is the vector gathering all sample means for the d features.



The Sample Variance of the new Feature

Given observations D.g41 = Do of the new feature

d
Fgi1 = Zaka, with sample mean HFy , = u;—a,
k=1

we compute the sample variance as

n

1 1 T 2
U§d+1 = ; Z(Dld+1 - /’LFd+1)2 = ; H (D - ]‘I'I’F ) a”
i=1




Sample Statistics of the new Feature

Given observations D.q41 = Do of the new feature

d
Fay1= Z akF,
k=1

the sample mean and variance is given by

1 2
pran=pme o= (0= 18l

We are interested in the direction of maximal variance, so we can
restrict the length of vector a: ||af =1
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Finding the Direction of Maximal Sample Variance

The direction of largest variance « is the solution to the following
optimization problem:

2
max -1 )a”
oz 79+ T @ H( He

1 T
= max —a' (D—lu;) <D—1u;>a
=10
a'CTCa
max ———
lle]=1 n

)

where C = D — 1y is the centered data matrix.
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So, the direction of largest
variance is given by the
operator norm of the centered
data matrix.




[ESEEENEEEEEES EEEEEun]

How can we derive a
low-dimensional representation
of the data?

Find the r orthogonal
directions of largest variance.



The Principal Components Analysis Task

Given: a data matrix D € R"*9 and a rank r.
Find: the r orthogonal direction of largest variance, given by the
columns Z¢ which are the solution to the following optimization

problem:

mZaxtr(ZT c'cz) st. ZER™", 2172 =1

where C = D — 1y is the centered data matrix.
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Optimization
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What is the solution Z of the
objective of PCA?

The right singular vectors of C.




SVD Solves the Objective of PCA

Theorem (Value of the Operator Norm)

Let C = UXV'" € R™9 pe the SVD of the matrix C. The
solution of the optimization problem

mzaxtr(zT c'cz) st. ZER™" Z'Z =]

is given by Z = V.g for R ={1,...r}.

Proof (sketch): Show that the objective above is equivalent to

mZinHCTC —-Z¥%:7"|? st. ZER™! ZTZ =1,



Principal Components Analysis

1: function PCA(D, r)

2: C+ D—1pf > Center the data matrix
3: (Ur,ZrRr, V.R) + TRUNCATEDSVD(C,r)
4: return CV.p > the low-dimensional view on the data

5. end function

PCA can be implemented such that the novel data representation
is centered (returning CV.g) or not (returning DV.g).



Two-Dimensional PCA on the Iris Dataset

PC1 = 0.36F; — 0.08F2 + 0.85F3 + 0.36F4
PC2 = 0.66F; + 0.73Fy — 0.17F3 — 0.07F4

PC1

m Fi:

E\)‘ .} j& m Fo:
O | e ° [4 &

¢ % m F3:

m Fy:

sepal length
sepal width
petal length
petal width
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PCA enables
Dimensionality Reduction

Onto the Directions with
Maximal Variance
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