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Unconstrained Optimization Problem

Given an objective function f : R"” — R, the objective of an
unconstrained optimization problem is:

in f
2 e

We say that:
m X" € argmin f(x) is a minimizer
xEeR"

m min f(x) is the minimum
x€R"?
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Local and Global Minimizers

global minimizer: x* = -2
2 local minimizer: x3 =1

A global minimizer is a vector x* satisfying
f(x*) < f(x) for all x € R"
A local minimizer is a vector xq satisfying
f(xo0) < f(x) for all x € Nc(xo),

where NV (xo) = {x € R"|||x — xo|| < €}



How can we solve an
unconstrained optimization
problem?

With FONC and SONC.
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Finding Stationary Points: our Minimizer Candidates

Every local minimizer xg is a stationary point: < (xo) = 0
(a.k.a. 1st order necessary condition)

d

f(x) = %x“ + %x‘o’ — x?
if(x) = x>+ x% — 2x
dx
d2

ﬁf(x) =3x> 4 2x -2

Possible local minimizers: x3 = —2,x =0,x3 =1
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|dentifying Minimizers by the Curvature

Every stationary point xg with increasing function values around it
. e . d d?

is a local minimizer: _&f(xo) :.O. & 55f(x0) =0

(a.k.a 2nd order sufficient condition)

1 1
y f(X):Zx4+§X3 X2
iI"(x) = x3 4+ x%—2x
dx
d? 5
d? d? d?
—f(— =6 > —_ = — —_— =3>
dx2f( 2)=6>0, dX2f(0) 2 <0, dx2f(1) 3>0
We identify the local minimizers x; = —2 and x; = 3.



Optimization Problems
[ENSEES SESSEESEEESEEEE]

What Happens in Higher Dimensions?

The derivative of a function f : RY — R is given by its partial

derivatives:
of(x) _ (or(x) 9F(x) 1xd :
o ( e B ) eR (Jacobian)
Of (x)
Ox1
Vif(x) = : eR? (Gradient)
Of (x)
8Xd
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First Order Necessary Condition

If x is a local minimizer of f : RY — R and f is continuously
differentiable in an open neighborhood of x, then

Vi(x)=0

A vector x is called stationary point if Vf(x) = 0.
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Second Order Necessary Condition

If x is a local minimizer of f : RY — R and V?f is continuous in an
open neighborhood of x, then

Vf(x) = 0 and V?f(x) is positive semidefinite

A matrix A € R9%? is positive semidefinite if

x| Ax >0 for all x € RY
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Example: the Rosenbrock Function
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Candidate Minimizers of the Rosenbrock Function

The Rosenbrock function is given by
f(x) = 100(x2 — X12)2 +(1- X1)2
We compute the gradient and set it to zero:

X X2—X X1 —
i (WO m) )

< x=(1,1)

According to FONC we have one stationary point, i.e., one local
minimizer candidate at xg = (1, 1).
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Evaluating the Curvature at the Candidate Minimizer

We compute the Hessian function of f at xo = (1, 1):

1 —2x
2 _ 1
VFx) =200 (—2x1 6x2 — 2x + 0.01)

) B 1 -2
V2f(xo) = 200 (_2 4‘01)

We check now if the Hessian is positive semi-definite at the
stationary point. Let x € R?, then

xTV2f(xo)x = (x1 — 2x2)2 + 0.01x2 > 0

Hence, V2f(xg) is p.s.d. and xg = (1,1) satisfies the SONC for a
local minimizer of f.



Nice, so finding local
minimizers is not a big deal

IF we have an unconstrained
objective with an objective
function which is twice
continuously differentiable.



Let's consider a more complex
setting:

Introducing Constraints
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Constrained Optimization Problem

Given
m an objective function f : RY — R and
m constraint functions ¢;, gx : R 5 R,

then the objective of an constrained optimization problem is

e )
s.t. ¢i(x) =0 for1<i<m,
gk(x) >0 forl< k </

We call the set of vectors satisfying the constraints the feasible set:

C={x|ci(x)=0,gk(x) >0for1 <i<m1<k<m}.



How can we solve a
constrained optimization tasks?

If we have constraints, then
FONC and SONC do not help

much anymore..




Can we transform the
constrained problem into an
unconstrained one?

Yes, maybe, kind of, with the
Lagrangian..
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The Lagrangian Function

Given a constrained optimization task:

20 0
s.t. ¢i(x) =0 for 1 <i<m,
gk(x) >0 forl< k </

The Lagrangian function is defined as

/
L(x, A, ) = f(x Z/\ ci(x Zukgk(x)
k=1

The parameters A; € R and p; > 0 are called Lagrange multipliers.
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The Lagrangian Forms a Lower Bound of the Objective

For feasible x € C and A € R™, u € R we have

k=1
IR A

!
L(x, A, p) = f(x Z/\ C, Z i 8k(x) < f(x)
i=1 _

This introduces the dual objective function Lg,ar:

. . - _
min f(x) = inf L, A, p) = nf, L(x, A, ) = Laual(A, 1)
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Primal and Dual Problem

Primal Probl
rimal Problem Dual Problem

max Lgyai(A, p)
Ap

/
st. AeR", e Ry

The solution to the primal problem is always bounded below by the
solution to the dual problem * > L% .

Some conditions yield that f* = L7, _,, then solving the dual is
equivalent to solving the primal.



Okay, so if | have an
unconstrained optimization

problem then | try FONC and
SONC...




. and if | have a constrained
optimization problem then |
can try to solve it over the dual
problem.



What if | can’'t compute the
minimizers by these
approaches?

Do Numerical Optimization
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Approximating a Minimizer

If the minimizers can not be computed directly/analytically, then
Numerical Optimization can come to the rescue.

The general scheme of numerical optimization methods is:

1. function OPTIMIZER(f)

2 Xo < INITIALIZE(Xp)

3: for t € {1,... ,tmax — 1} do
4: Xt+1 < UPDATE(x¢, f)

5 end for

6: return x;,_..

7: end function
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Coordinate Descent

Sometimes, we can not determine the minimum analytically, but
the minimum in a coordinate direction.

Coordinate descent update:

) —argmin Fa®, . xi, . xqD), 1<i<d

Xj
Coordinate descent minimizes
in every step, hence

F(xO) > F(xM) > F(x)) > ...
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Example: Coordinate Descent on the Rosenbrock Function

argmin f(xy,x2) =1 arg min f(x1, x0) = x¢
x1€R x2€R

Optimization with 3 iterations
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Gradient Descent

If we do not know much but a gradient, we can apply gradient

descent.
Gradient descent update: L4
X4l & Xp — an(Xt) X3

where 7 is the step size. @

The negative gradient points into the direction of steepest descent.
Hence, for a small enough step size we obtain a sequence

f(xo0) > f(x1) > f(x2) > ...
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Example: Gradient Descent with n = 0.00125 on the
Rosenbrock Function

Gradient Descent with 2616 iterations
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Example: Gradient Descent with 7 = 0.0016 on the
Rosenbrock Function

Gradient Descent with 796 iterations
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Example: Gradient Descent with n = 0.0005 on the
Rosenbrock Function

Gradient Descent with 6628 iterations




With every run of numerical
optimization | get one
minimizer candidate. How do |
know if | can do bettter?

Analyze the optimization
problem!




When every local minimizer is
a global minimizer:

Convex Optimization
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Convex Sets

A set X C RY is convex if and only if the line segment between
every pair of points in the set is in the set.

That is, for all x,y € X and « € [0, 1]

ax+ (1 —a)y e X.




Convex optimization
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Convex Functions

A function f : RY — R is convex if and only if for every a € [0, 1],
and x,y € RY:

flax+ (1 — a)y) < af(x) + (1 — a)f(y)




Convex optimization
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Convex Optimization Problem

Given
m a convex objective function f : R — R and
m a convex feasible set C C R

then the objective of a convex optimization problem is

xngIIEQ" f(X)
st. xeC



Convex optimization
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Properties of Convex Functions

If f is convex, then every local minimizer x* is a global minimizer.

Note: not every function with one global and local minimum is
convex (cf. Rosenbrock function).

Proof (Sketch): Assume that a convex function f has a local
minimizer xj,c which is not a global minimizer: f(xjc) > f(x*).
Then going towards x* from xj,c minimizes the function value,
hence Xxjoc is not a local minimizer.
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Properties of Convex Functions

m Nonnegative weighted sums of convex functions are convex:
forall A1,...,Ax >0and fi,..., f; convex, then the function

f(x) = Aifi(x) + ...+ Mefe(x)

is convex.

m If g: RY — RK, g(x) = Ax+ b is an affine map, and
f:RK — R is a convex function, then the composition

f(g(x)) = f(Ax+b)

is a convex function.

Proof: Exercise



Convex optimization

Examples of Convex Functions

Every norm is a convex function: for
any x,y € R? and a € [0, 1] we have:

y
lox + (1 = a)yl| < flax|[ +[I(1 — a)y]|
X < lelIX[ + 1 = afllyll
= allx[| + (1 = a)llyl|
, Every linear function f is convex and
Y concave (-f is convex): for any

X x,y € RY and a € [0, 1] we have:

flax+ (1 —a)y) = af(x) + (1 — a)f(y)




Okay nice, so if my
optimization problem is convex
then | only need to find a local

minimium (for example by
gradient descent).




How do | compute the
gradient? Do | always have to
compute the partial
derivatives?

No, use the chain rule
whenever you can!




Matrix Derivatives
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Gradient Descent needs a Gradient

There are two ways to define the derivative of a function

f:R™ SR
9 (X) 9 (X)
oXi1 77 0Xm
f(X

88()() = 5 : e R9*n (Jacobian)
df (X) Af(X)
0Xyg 777 OXpg
BF (X) Bf (X)
oXu 7 00X

viX)=1| .. e R™d (Gradient)
OF (X) OF (X)
a)<n1 T a)<nd

Be careful!
This notation is not used by all authors!




Matrix Derivatives
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The Jacobian of f

Of (x)
. od _ (of(x) Of (x) 1xd
FiRIR X (g g R
DF(X) OF(X)
X OX,
DF(X) DF(X)
0X1d 0Xnd
Ofi(x)
Of(x) Ox
fiRRT == =| i |cR
X Of(x)
Ox
Bg(x) Bg(x)
L 5
fiRY - R 6‘(;(X): ;1 | erexd
X Of(x) Of.(x)
6x1 aXd



Matrix Derivatives
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The Gradient of f

Of (x)
Ox1
f:RTSR Vo fx)=| : |eRr
Of (x)
Ox4
Af(X) Af(X)
oXu T 00Xy
fFiR™Y SR VUxf(X)=| . | eR™
Of (X) Of (X)
a)<n1 a)<m:1
FIRDRE Vif(x) = (%00 2600 g pixe
Ofi(x) of.(x)
Ox1 e Ox1
f:RY - R® Vi) = : .. i | eRIxe
0fi(x) Ofc(x)
0xy Oxy



Matrix Derivatives
oo
Most Important Derivation Rules

.
V,f(x) = <ag(;<)>

8af(x()3:— g = aafa(;) + 82(;) (linearity)

8f(§)((x)) = 62(5) 8(g9(xx) (chain rule)



Matrix Derivatives
oo
Most Important Derivation Rules

.
V,f(x) = <ag(;<)>

8af(x()3:— g = aafa(;) + 82(;) (linearity)

8f(§)((x)) = 62(5) 8(g9(xx) (chain rule)

Exercise: Derive the following equations:

8HXH2 8b—ax 0b — Ax
Ox ox Ox

Vb — Ax||2, Vx||D — YXT|?
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