Optimization

Sibylle Hess

University of Technology

Optimization

Unconstrained Optimization Problem

Given an objective function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the objective of an unconstrained optimization problem is:

$$
\min _{x \in \mathbb{R}^{n}} f(x)
$$

We say that:

- $\mathrm{x}^{*} \in \arg \min f(\mathrm{x})$ is a minimizer

$$
x \in \mathbb{R}^{n}
$$

- $\min _{x \in \mathbb{R}^{n}} f(x)$ is the minimum

Local and Global Minimizers

global minimizer: $x^{*}=-2$
local minimizer: $x_{3}=1$

A global minimizer is a vector x^{*} satisfying

$$
f\left(x^{*}\right) \leq f(x) \text { for all } x \in \mathbb{R}^{n}
$$

A local minimizer is a vector x_{0} satisfying

$$
f\left(x_{0}\right) \leq f(x) \text { for all } x \in \mathcal{N}_{\epsilon}\left(x_{0}\right),
$$

where $\mathcal{N}_{\epsilon}\left(\mathrm{x}_{0}\right)=\left\{\mathrm{x} \in \mathbb{R}^{n} \mid\left\|x-x_{0}\right\| \leq \epsilon\right\}$

How can we solve an unconstrained optimization problem?

Finding Stationary Points: our Minimizer Candidates

Every local minimizer x_{0} is a stationary point: $\frac{d}{d x} f\left(x_{0}\right)=0$ (a.k.a. 1st order necessary condition)

$$
\begin{aligned}
f(x) & =\frac{1}{4} x^{4}+\frac{1}{3} x^{3}-x^{2} \\
\frac{d}{d x} f(x) & =x^{3}+x^{2}-2 x \\
\frac{d^{2}}{d x^{2}} f(x) & =3 x^{2}+2 x-2
\end{aligned}
$$

Possible local minimizers: $x_{1}=-2, x_{2}=0, x_{3}=1$

Identifying Minimizers by the Curvature

Every stationary point x_{0} with increasing function values around it is a local minimizer: $\frac{d}{d x} f\left(x_{0}\right)=0 \& \frac{d^{2}}{d x^{2}} f\left(x_{0}\right) \geq 0$
(a.k.a 2 nd order sufficient condition)

$$
\begin{aligned}
f(x) & =\frac{1}{4} x^{4}+\frac{1}{3} x^{3}-x^{2} \\
\frac{d}{d x} f(x) & =x^{3}+x^{2}-2 x \\
\frac{d^{2}}{d x^{2}} f(x) & =3 x^{2}+2 x-2
\end{aligned}
$$

$$
\frac{d^{2}}{d x^{2}} f(-2)=6 \geq 0, \quad \frac{d^{2}}{d x^{2}} f(0)=-2<0, \quad \frac{d^{2}}{d x^{2}} f(1)=3 \geq 0
$$

We identify the local minimizers $x_{1}=-2$ and $x_{2}=3$.

What Happens in Higher Dimensions?

The derivative of a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is given by its partial derivatives:

$$
\begin{aligned}
\frac{\partial f(\mathrm{x})}{\partial x} & =\left(\begin{array}{ccc}
\frac{\partial f(\mathrm{x})}{\partial x_{1}} & \ldots & \left.\frac{\partial f(\mathrm{x})}{\partial x_{d}}\right) \in \mathbb{R}^{1 \times d} \\
\nabla_{\mathrm{x}} f(x) & =\left(\begin{array}{c}
\frac{\partial f(\mathrm{x})}{\partial x_{1}} \\
\vdots \\
\frac{\partial f(\mathrm{x})}{\partial x_{d}}
\end{array}\right) \in \mathbb{R}^{d} & \quad \text { (Jacobian) }
\end{array}\right.
\end{aligned}
$$

First Order Necessary Condition

FONC

If x is a local minimizer of $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and f is continuously differentiable in an open neighborhood of x, then

$$
\nabla f(x)=0
$$

A vector x is called stationary point if $\nabla f(\mathrm{x})=0$.

Second Order Necessary Condition

SONC

If x is a local minimizer of $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and $\nabla^{2} f$ is continuous in an open neighborhood of x, then

$$
\nabla f(\mathrm{x})=0 \text { and } \nabla^{2} f(\mathrm{x}) \text { is positive semidefinite }
$$

A matrix $A \in \mathbb{R}^{d \times d}$ is positive semidefinite if

$$
\mathrm{x}^{\top} A \mathrm{x} \geq 0 \text { for all } \mathrm{x} \in \mathbb{R}^{d}
$$

Example: the Rosenbrock Function

The Rosenbrock function is given by

$$
f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

We compute the gradient and set it to zero:

$$
\begin{aligned}
\nabla f(\mathrm{x}) & =\binom{400 x_{1}\left(x_{1}^{2}-x_{2}\right)+2\left(x_{1}-1\right)}{200\left(x_{2}-x_{1}^{2}\right)}=0 \\
\Leftrightarrow x & =(1,1)
\end{aligned}
$$

According to FONC we have one stationary point, i.e., one local minimizer candidate at $x_{0}=(1,1)$.

Evaluating the Curvature at the Candidate Minimizer

We compute the Hessian function of f at $x_{0}=(1,1)$:

$$
\begin{aligned}
\nabla^{2} f(x) & =200\left(\begin{array}{cc}
1 & -2 x_{1} \\
-2 x_{1} & 6 x_{1}^{2}-2 x_{2}+0.01
\end{array}\right) \\
\nabla^{2} f\left(x_{0}\right) & =200\left(\begin{array}{cc}
1 & -2 \\
-2 & 4.01
\end{array}\right)
\end{aligned}
$$

We check now if the Hessian is positive semi-definite at the stationary point. Let $x \in \mathbb{R}^{2}$, then

$$
x^{\top} \nabla^{2} f\left(x_{0}\right) x=\left(x_{1}-2 x_{2}\right)^{2}+0.01 x_{2}^{2} \geq 0
$$

Hence, $\nabla^{2} f\left(\mathrm{x}_{0}\right)$ is p.s.d. and $\mathrm{x}_{0}=(1,1)$ satisfies the SONC for a local minimizer of f.

Nice，so finding local minimizers is not a big deal

IF we have an unconstrained objective with an objective function which is twice continuously differentiable．

Let's consider a more complex setting:

Introducing Constraints

Constrained Optimization Problem

Given
■ an objective function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and

- constraint functions $c_{i}, g_{k}: \mathbb{R}^{d} \rightarrow \mathbb{R}$, then the objective of an constrained optimization problem is

$$
\begin{array}{lr}
\min _{x \in \mathbb{R}^{n}} f(\mathrm{x}) & \\
\text { s.t. } & c_{i}(\mathrm{x})=0 \\
g_{k}(\mathrm{x}) \geq 0 & \text { for } 1 \leq i \leq m, \\
\text { for } 1 \leq k \leq 1
\end{array}
$$

We call the set of vectors satisfying the constraints the feasible set:

$$
\mathcal{C}=\left\{\mathrm{x} \mid c_{i}(\mathrm{x})=0, g_{k}(\mathrm{x}) \geq 0 \text { for } 1 \leq i \leq m, 1 \leq k \leq m\right\} .
$$

How can we solve a

 constrained optimization tasks?If we have constraints, then FONC and SONC do not help much anymore..

Can we transform the constrained problem into an unconstrained one?

Yes, maybe, kind of, with the Lagrangian..

The Lagrangian Function

Given a constrained optimization task:

$$
\begin{array}{lr}
\min _{x \in \mathbb{R}^{n}} f(\mathrm{x}) & \\
\text { s.t. } & c_{i}(\mathrm{x})=0 \\
g_{k}(\mathrm{x}) \geq 0 & \text { for } 1 \leq i \leq m, \\
\text { for } 1 \leq k \leq 1
\end{array}
$$

The Lagrangian function is defined as

$$
\mathcal{L}(\mathrm{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})=f(\mathrm{x})-\sum_{i=1}^{m} \boldsymbol{\lambda}_{i} c_{i}(\mathrm{x})-\sum_{k=1}^{l} \boldsymbol{\mu}_{k} g_{k}(\mathrm{x})
$$

The parameters $\boldsymbol{\lambda}_{\boldsymbol{i}} \in \mathbb{R}$ and $\boldsymbol{\mu}_{\boldsymbol{i}} \geq 0$ are called Lagrange multipliers.

The Lagrangian Forms a Lower Bound of the Objective

For feasible $x \in \mathcal{C}$ and $\boldsymbol{\lambda} \in \mathbb{R}^{m}, \boldsymbol{\mu} \in \mathbb{R}^{\prime}$ we have

$$
\mathcal{L}(\mathrm{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})=f(\mathrm{x})-\sum_{i=1}^{m} \boldsymbol{\lambda}_{i} \underbrace{c_{i}(\mathrm{x}}_{=0})-\sum_{k=1}^{l} \underbrace{\boldsymbol{\mu}_{k}}_{\geq 0} \underbrace{g_{k}(\mathrm{x})}_{\geq 0} \leq f(\mathrm{x})
$$

This introduces the dual objective function $\mathcal{L}_{\text {dual }}$:

$$
\min _{x \in \mathcal{C}} f(x) \geq \inf _{x \in \mathcal{C}} \mathcal{L}(x, \boldsymbol{\lambda}, \boldsymbol{\mu}) \geq \inf _{x \in \mathbb{R}^{d}} \mathcal{L}(x, \boldsymbol{\lambda}, \boldsymbol{\mu})=\mathcal{L}_{\text {dual }}(\boldsymbol{\lambda}, \boldsymbol{\mu})
$$

Primal and Dual Problem

Primal Problem

Dual Problem

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} f(x) \\
& \text { s.t. } \\
& c_{i}(x)=0 \quad 1 \leq i \leq m, \\
& \quad g_{k}(x) \geq 0 \quad 1 \leq k \leq 1
\end{aligned}
$$

$$
\begin{aligned}
& \max _{\boldsymbol{\lambda}, \boldsymbol{\mu}} \mathcal{L}_{\text {dual }}(\boldsymbol{\lambda}, \boldsymbol{\mu}) \\
& \text { s.t. } \boldsymbol{\lambda} \in \mathbb{R}^{m}, \boldsymbol{\mu} \in \mathbb{R}_{+}^{\prime}
\end{aligned}
$$

The solution to the primal problem is always bounded below by the solution to the dual problem $f^{*} \geq \mathcal{L}_{\text {dual }}^{*}$.

Some conditions yield that $f^{*}=\mathcal{L}_{\text {dual }}^{*}$, then solving the dual is equivalent to solving the primal.

Okay, so if I have an unconstrained optimization problem then I try FONC and SONC...

... and if I have a constrained optimization problem then I can try to solve it over the dual problem.

What if I can't compute the minimizers by these approaches?

Do Numerical Optimization

Approximating a Minimizer

If the minimizers can not be computed directly/analytically, then Numerical Optimization can come to the rescue.

The general scheme of numerical optimization methods is:

1: function Optimizer (f)
2: $\quad x_{0} \leftarrow \operatorname{Initialize}\left(x_{0}\right)$
3: for $t \in\left\{1, \ldots, t_{\max }-1\right\}$ do
4: $\quad x_{t+1} \leftarrow \operatorname{Update}\left(x_{t}, f\right)$
5: end for
6: return $x_{t_{\text {max }}}$
7: end function

Coordinate Descent

Sometimes, we can not determine the minimum analytically, but the minimum in a coordinate direction.

Coordinate descent update:

$$
x_{i}^{(t+1)} \leftarrow \underset{x_{i}}{\arg \min } f\left(x_{1}^{(t)}, \ldots, x_{i}, \ldots x_{d}{ }^{(t)}\right), \quad 1 \leq i \leq d
$$

Coordinate descent minimizes in every step, hence $f\left(x^{(0)}\right) \geq f\left(x^{(1)}\right) \geq f\left(x^{(2)}\right) \geq \ldots$

Example: Coordinate Descent on the Rosenbrock Function

$$
\arg \min f\left(x_{1}, x_{2}\right)=1
$$

$\arg \min f\left(x_{1}, x_{2}\right)=x_{1}^{2}$

$$
x_{1} \in \mathbb{R}
$$

$x_{2} \in \mathbb{R}$

Gradient Descent

If we do not know much but a gradient, we can apply gradient descent.

Gradient descent update:

$$
\mathrm{x}_{t+1} \leftarrow \mathrm{x}_{t}-\eta \nabla f\left(\mathrm{x}_{t}\right)
$$

where η is the step size.

The negative gradient points into the direction of steepest descent. Hence, for a small enough step size we obtain a sequence

$$
f\left(x_{0}\right) \geq f\left(x_{1}\right) \geq f\left(x_{2}\right) \geq \ldots
$$

Example：Gradient Descent with $\eta=0.00125$ on the Rosenbrock Function

Example: Gradient Descent with $\eta=0.0016$ on the Rosenbrock Function

Example: Gradient Descent with $\eta=0.0005$ on the Rosenbrock Function

With every run of numerical optimization I get one

 minimizer candidate. How do know if I can do bettter?Analyze the optimization problem!

When every local minimizer is a global minimizer:

Convex Optimization

Convex Sets

A set $\mathcal{X} \subseteq \mathbb{R}^{d}$ is convex if and only if the line segment between every pair of points in the set is in the set.

That is, for all $x, y \in \mathcal{X}$ and $\alpha \in[0,1]$

$$
\alpha x+(1-\alpha) y \in \mathcal{X}
$$

Convex Functions

A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if and only if for every $\alpha \in[0,1]$, and $\mathrm{x}, \mathrm{y} \in \mathbb{R}^{d}$:

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)
$$

Convex Optimization Problem

Given

- a convex objective function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and
- a convex feasible set $\mathcal{C} \subseteq \mathbb{R}^{d}$
then the objective of a convex optimization problem is

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{n}} f(x) \\
& \text { s.t. } x \in \mathcal{C}
\end{aligned}
$$

Properties of Convex Functions

Theorem

If f is convex, then every local minimizer x^{*} is a global minimizer.
Note: not every function with one global and local minimum is convex (cf. Rosenbrock function).

Proof (Sketch): Assume that a convex function f has a local minimizer $x_{\text {loc }}$ which is not a global minimizer: $f\left(x_{\text {loc }}\right)>f\left(x^{*}\right)$. Then going towards x^{*} from $x_{\text {loc }}$ minimizes the function value, hence $x_{l o c}$ is not a local minimizer.

Properties of Convex Functions

■ Nonnegative weighted sums of convex functions are convex: for all $\lambda_{1}, \ldots, \lambda_{k} \geq 0$ and f_{1}, \ldots, f_{k} convex, then the function

$$
f(x)=\lambda_{1} f_{1}(x)+\ldots+\lambda_{k} f_{k}(x)
$$

is convex.
■ If $g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}, g(x)=A x+b$ is an affine map, and $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is a convex function, then the composition

$$
f(g(x))=f(A x+b)
$$

is a convex function.

Proof: Exercise

Examples of Convex Functions

Every norm is a convex function: for
 any $x, y \in \mathbb{R}^{d}$ and $\alpha \in[0,1]$ we have:

$$
\begin{aligned}
\|\alpha \mathrm{x}+(1-\alpha) \mathrm{y}\| & \leq\|\alpha \mathrm{x}\|+\|(1-\alpha) \mathrm{y}\| \\
& \leq|\alpha|\|\mathrm{x}\|+|1-\alpha|\|\mathrm{y}\| \\
& =\alpha\|\mathrm{x}\|+(1-\alpha)\|\mathrm{y}\|
\end{aligned}
$$

Every linear function f is convex and concave ($-f$ is convex): for any $\mathrm{x}, \mathrm{y} \in \mathbb{R}^{d}$ and $\alpha \in[0,1]$ we have:
$f(\alpha x+(1-\alpha) y)=\alpha f(x)+(1-\alpha) f(y)$

Okay nice, so if my

optimization problem is convex

 then I only need to find a local minimium (for example by gradient descent).
How do I compute the gradient? Do I always have to compute the partial derivatives?

No, use the chain rule whenever you can!

Gradient Descent needs a Gradient

There are two ways to define the derivative of a function

$$
\begin{gathered}
f: \mathbb{R}^{n \times d} \rightarrow \mathbb{R} . \\
\frac{\partial f(X)}{\partial X}=\left(\begin{array}{ccc}
\frac{\partial f(X)}{\partial X_{11}} & \ldots & \frac{\partial f(X)}{\partial X_{n 1}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f(X)}{\partial X_{1 d}} & \cdots & \frac{\partial f(X)}{\partial X_{n d}}
\end{array}\right) \in \mathbb{R}^{d \times n} \quad \text { (Jacobian) } \\
\nabla f(X)=\left(\begin{array}{ccc}
\frac{\partial f(X)}{\partial X_{11}} & \ldots & \frac{\partial f(X)}{\partial X_{1 d}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f(X)}{\partial X_{n 1}} & \ldots & \frac{\partial f(X)}{\partial X_{n d}}
\end{array}\right) \in \mathbb{R}^{n \times d} \quad \text { (Gradient) }
\end{gathered}
$$

Be careful!

This notation is not used by all authors!

The Jacobian of f

$$
\begin{aligned}
f: \mathbb{R}^{d} \rightarrow \mathbb{R} & \frac{\partial f(\mathrm{x})}{\partial \mathrm{x}}=\left(\begin{array}{ccc}
\frac{\partial f(x)}{\partial x_{1}} & \cdots & \left.\frac{\partial f(x)}{\partial x_{d}}\right) \in \mathbb{R}^{1 \times d} \\
f: \mathbb{R}^{n \times d} \rightarrow \mathbb{R} & \frac{\partial f(X)}{\partial X}=\left(\begin{array}{ccc}
\frac{\partial f(X)}{\partial X_{11}} & \cdots & \frac{\partial f(X)}{\partial X_{n 1}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f(X)}{\partial X_{1 d}} & \cdots & \frac{\partial f(X)}{\partial X_{n d}}
\end{array}\right) \in \mathbb{R}^{d \times n} \\
f: \mathbb{R} \rightarrow \mathbb{R}^{c} & \frac{\partial f(x)}{\partial x}=\left(\begin{array}{c}
\frac{\partial f_{1}(x)}{\partial x} \\
\vdots \\
\frac{\partial f_{c}(x)}{\partial x}
\end{array}\right) \in \mathbb{R}^{c} \\
f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{c} & \frac{\partial f(x)}{\partial x}=\left(\begin{array}{ccc}
\frac{\partial f_{1}(x)}{\partial x_{1}} & \cdots & \frac{\partial f_{1}(x)}{\partial x_{d}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{c}(x)}{\partial x_{1}} & \cdots & \frac{\partial f_{c}(x)}{\partial x_{d}}
\end{array}\right) \in \mathbb{R}^{c \times d}
\end{array} .\right.
\end{aligned}
$$

The Gradient of f

$$
\begin{aligned}
f: \mathbb{R}^{d} \rightarrow \mathbb{R} & \nabla_{x} f(x)=\left(\begin{array}{c}
\frac{\partial f(x)}{\partial x_{1}} \\
\vdots \\
\frac{\partial f(x)}{\partial x_{d}}
\end{array}\right) \\
f: \mathbb{R}^{n \times d} \rightarrow \mathbb{R} & \nabla_{x} f(X)=\left(\begin{array}{ccc}
\frac{\partial f(X)}{\partial X_{11}} & \cdots & \frac{\partial f(X)}{\partial X_{1 d}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f(X)}{\partial X_{n 1}} & \ldots & \frac{\partial f(X)}{\partial X_{n d}}
\end{array}\right) \in \mathbb{R}^{n \times d} \\
f: \mathbb{R} \rightarrow \mathbb{R}^{c} & \nabla_{x} f(x)=\left(\begin{array}{ccc}
\frac{\partial f_{1}(x)}{\partial x} & \ldots & \frac{\partial f_{c}(x)}{\partial x}
\end{array}\right) \in \mathbb{R}^{1 \times c} \\
f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{c} & \nabla_{x} f(x)=\left(\begin{array}{ccc}
\frac{\partial f_{1}(x)}{\partial x_{1}} & \ldots & \frac{\partial f_{c}(x)}{\partial x_{1}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{1}(x)}{\partial x_{d}} & \cdots & \frac{\partial f_{c}(x)}{\partial x_{d}}
\end{array}\right) \in \mathbb{R}^{d \times c}
\end{aligned}
$$

Most Important Derivation Rules

$$
\begin{aligned}
\nabla_{\mathrm{x}} \mathrm{f}(\mathrm{x}) & =\left(\frac{\partial \mathrm{f}(\mathrm{x})}{\partial \mathrm{x}}\right)^{\top} \\
\frac{\partial \alpha \mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})}{\partial \mathrm{x}} & =\alpha \frac{\partial \mathrm{f}(\mathrm{x})}{\partial \mathrm{x}}+\frac{\partial \mathrm{g}(\mathrm{x})}{\partial \mathrm{x}} \\
\frac{\partial \mathrm{f}(\mathrm{~g}(\mathrm{x}))}{\partial \mathrm{x}} & =\frac{\partial \mathrm{f}(\mathrm{~g})}{\partial \mathrm{g}} \frac{\partial \mathrm{~g}(\mathrm{x})}{\partial \mathrm{x}}
\end{aligned}
$$

(linearity)
(chain rule)

Most Important Derivation Rules

$$
\begin{aligned}
\nabla_{\mathrm{x}} \mathrm{f}(\mathrm{x}) & =\left(\frac{\partial \mathrm{f}(\mathrm{x})}{\partial \mathrm{x}}\right)^{\top} \\
\frac{\partial \alpha \mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})}{\partial \mathrm{x}} & =\alpha \frac{\partial \mathrm{f}(\mathrm{x})}{\partial \mathrm{x}}+\frac{\partial \mathrm{g}(\mathrm{x})}{\partial \mathrm{x}} \\
\frac{\partial \mathrm{f}(\mathrm{~g}(\mathrm{x}))}{\partial \mathrm{x}} & =\frac{\partial \mathrm{f}(\mathrm{~g})}{\partial \mathrm{g}} \frac{\partial \mathrm{~g}(\mathrm{x})}{\partial \mathrm{x}}
\end{aligned}
$$

Exercise: Derive the following equations:

$$
\frac{\partial\|\mathrm{x}\|^{2}}{\partial \mathrm{x}}, \frac{\partial \mathrm{~b}-\mathrm{ax}}{\partial \mathrm{x}}, \frac{\partial \mathrm{~b}-A \mathrm{x}}{\partial \mathrm{x}}, \nabla_{\mathrm{x}}\|\mathrm{~b}-A \mathrm{x}\|^{2}, \nabla_{X}\left\|D-Y X^{\top}\right\|^{2}
$$

