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Unconstrained Optimization Problem

Given an objective function f : Rn → R, the objective of an
unconstrained optimization problem is:

min
x∈Rn

f (x)

We say that:

x∗ ∈ arg min
x∈Rn

f (x) is a minimizer

min
x∈Rn

f (x) is the minimum
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Local and Global Minimizers

−2 2

x
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global minimizer: x∗ = −2
local minimizer: x3 = 1

A global minimizer is a vector x∗ satisfying

f (x∗) ≤ f (x) for all x ∈ Rn

A local minimizer is a vector x0 satisfying

f (x0) ≤ f (x) for all x ∈ Nε(x0),

where Nε(x0) = {x ∈ Rn|‖x − x0‖ ≤ ε}
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How can we solve an
unconstrained optimization

problem?

With FONC and SONC.
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Finding Stationary Points: our Minimizer Candidates

Every local minimizer x0 is a stationary point: d
dx f (x0) = 0

(a.k.a. 1st order necessary condition)

x

y f (x) =
1

4
x4 +

1

3
x3 − x2

d

dx
f (x) = x3 + x2 − 2x

d2

dx2
f (x) = 3x2 + 2x − 2

d

dx
f (x) = 0 ⇔ x1 = −2, x2 = 0, x3 = 1

Possible local minimizers: x1 = −2, x2 = 0, x3 = 1
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Identifying Minimizers by the Curvature

Every stationary point x0 with increasing function values around it
is a local minimizer: d

dx f (x0) = 0 & d2

dx2
f (x0) ≥ 0

(a.k.a 2nd order sufficient condition)

x

y f (x) =
1

4
x4 +

1

3
x3 − x2

d

dx
f (x) = x3 + x2 − 2x

d2

dx2
f (x) = 3x2 + 2x − 2

d2

dx2
f (−2) = 6 ≥ 0,

d2

dx2
f (0) = −2 < 0,

d2

dx2
f (1) = 3 ≥ 0

We identify the local minimizers x1 = −2 and x2 = 3.
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What Happens in Higher Dimensions?

The derivative of a function f : Rd → R is given by its partial
derivatives:

∂f (x)

∂x
=
(
∂f (x)
∂x1

. . . ∂f (x)
∂xd

)
∈ R1×d (Jacobian)

∇xf (x) =


∂f (x)
∂x1
...

∂f (x)
∂xd

 ∈ Rd (Gradient)



Optimization Problems Numerical Optimization Convex optimization Matrix Derivatives

First Order Necessary Condition

FONC

If x is a local minimizer of f : Rd → R and f is continuously
differentiable in an open neighborhood of x, then

∇f (x) = 0

A vector x is called stationary point if ∇f (x) = 0.
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Second Order Necessary Condition

SONC

If x is a local minimizer of f : Rd → R and ∇2f is continuous in an
open neighborhood of x, then

∇f (x) = 0 and ∇2f (x) is positive semidefinite

A matrix A ∈ Rd×d is positive semidefinite if

x>Ax ≥ 0 for all x ∈ Rd
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Example: the Rosenbrock Function
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Candidate Minimizers of the Rosenbrock Function

The Rosenbrock function is given by

f (x) = 100(x2 − x21 )2 + (1− x1)2

We compute the gradient and set it to zero:

∇f (x) =

(
400x1(x21 − x2) + 2(x1 − 1)

200(x2 − x21 )

)
= 0,

⇔ x = (1, 1)

According to FONC we have one stationary point, i.e., one local
minimizer candidate at x0 = (1, 1).
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Evaluating the Curvature at the Candidate Minimizer

We compute the Hessian function of f at x0 = (1, 1):

∇2f (x) = 200

(
1 −2x1
−2x1 6x21 − 2x2 + 0.01

)
∇2f (x0) = 200

(
1 −2
−2 4.01

)
We check now if the Hessian is positive semi-definite at the
stationary point. Let x ∈ R2, then

x>∇2f (x0)x = (x1 − 2x2)2 + 0.01x22 ≥ 0

Hence, ∇2f (x0) is p.s.d. and x0 = (1, 1) satisfies the SONC for a
local minimizer of f .
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Nice, so finding local
minimizers is not a big deal

IF we have an unconstrained
objective with an objective

function which is twice
continuously differentiable.
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Let’s consider a more complex
setting:

Introducing Constraints
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Constrained Optimization Problem

Given

an objective function f : Rd → R and

constraint functions ci , gk : Rd → R,

then the objective of an constrained optimization problem is

min
x∈Rn

f (x)

s.t. ci (x) = 0 for 1 ≤ i ≤ m,

gk(x) ≥ 0 for 1 ≤ k ≤ l

We call the set of vectors satisfying the constraints the feasible set:

C = {x | ci (x) = 0, gk(x) ≥ 0 for 1 ≤ i ≤ m, 1 ≤ k ≤ m}.
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How can we solve a
constrained optimization tasks?

If we have constraints, then
FONC and SONC do not help

much anymore..
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Can we transform the
constrained problem into an

unconstrained one?

Yes, maybe, kind of, with the
Lagrangian..
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The Lagrangian Function

Given a constrained optimization task:

min
x∈Rn

f (x)

s.t. ci (x) = 0 for 1 ≤ i ≤ m,

gk(x) ≥ 0 for 1 ≤ k ≤ l

The Lagrangian function is defined as

L(x,λ,µ) = f (x)−
m∑
i=1

λici (x)−
l∑

k=1

µkgk(x).

The parameters λi ∈ R and µi ≥ 0 are called Lagrange multipliers.
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The Lagrangian Forms a Lower Bound of the Objective

For feasible x ∈ C and λ ∈ Rm,µ ∈ Rl we have

L(x,λ,µ) = f (x)−
m∑
i=1

λi ci (x︸︷︷︸
=0

)−
l∑

k=1

µk︸︷︷︸
≥0

gk(x)︸ ︷︷ ︸
≥0

≤ f (x)

This introduces the dual objective function Ldual :

min
x∈C

f (x) ≥ inf
x∈C
L(x,λ,µ) ≥ inf

x∈Rd
L(x,λ,µ) = Ldual(λ,µ)
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Primal and Dual Problem

Primal Problem

min
x∈Rn

f (x)

s.t. ci (x) = 0 1 ≤ i ≤ m,

gk(x) ≥ 0 1 ≤ k ≤ l

Dual Problem

max
λ,µ
Ldual(λ,µ)

s.t. λ ∈ Rm,µ ∈ Rl
+

The solution to the primal problem is always bounded below by the
solution to the dual problem f ∗ ≥ L∗dual .

Some conditions yield that f ∗ = L∗dual , then solving the dual is
equivalent to solving the primal.
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Okay, so if I have an
unconstrained optimization

problem then I try FONC and
SONC...
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... and if I have a constrained
optimization problem then I

can try to solve it over the dual
problem.
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What if I can’t compute the
minimizers by these

approaches?

Do Numerical Optimization
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Approximating a Minimizer

If the minimizers can not be computed directly/analytically, then
Numerical Optimization can come to the rescue.

The general scheme of numerical optimization methods is:

1: function Optimizer(f )
2: x0 ← Initialize(x0)
3: for t ∈ {1, . . . , tmax − 1} do
4: xt+1 ←Update(xt , f )
5: end for
6: return xtmax

7: end function
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Coordinate Descent

Sometimes, we can not determine the minimum analytically, but
the minimum in a coordinate direction.

Coordinate descent update:

xi
(t+1) ← arg min

xi
f (x1

(t), . . . , xi , . . . xd
(t)), 1 ≤ i ≤ d

Coordinate descent minimizes
in every step, hence

f (x(0)) ≥ f (x(1)) ≥ f (x(2)) ≥ . . .

(x
(0)
1 , x

(0)
2 )

(x
(1)
1 , x

(0)
2 ) (x

(1)
1 , y

(1)
1 )
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Example: Coordinate Descent on the Rosenbrock Function

arg min
x1∈R

f (x1, x2) = 1 arg min
x2∈R

f (x1, x2) = x21
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Gradient Descent

If we do not know much but a gradient, we can apply gradient
descent.

Gradient descent update:

xt+1 ← xt − η∇f (xt)

where η is the step size.

x0

x1

x2

x3

x4

The negative gradient points into the direction of steepest descent.
Hence, for a small enough step size we obtain a sequence

f (x0) ≥ f (x1) ≥ f (x2) ≥ . . .
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Example: Gradient Descent with η = 0.00125 on the
Rosenbrock Function
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Example: Gradient Descent with η = 0.0016 on the
Rosenbrock Function
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Example: Gradient Descent with η = 0.0005 on the
Rosenbrock Function
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With every run of numerical
optimization I get one

minimizer candidate. How do I
know if I can do bettter?

Analyze the optimization
problem!
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When every local minimizer is
a global minimizer:

Convex Optimization
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Convex Sets

A set X ⊆ Rd is convex if and only if the line segment between
every pair of points in the set is in the set.

That is, for all x , y ∈ X and α ∈ [0, 1]

αx + (1− α)y ∈ X .
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Convex Functions

A function f : Rd → R is convex if and only if for every α ∈ [0, 1],
and x, y ∈ Rd :

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y)

f (x)

x
αx + (1− α)y

y

f (αx + (1− α)y)

αf (x) + (1− α)f (y)
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Convex Optimization Problem

Given

a convex objective function f : Rd → R and

a convex feasible set C ⊆ Rd

then the objective of a convex optimization problem is

min
x∈Rn

f (x)

s.t. x ∈ C
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Properties of Convex Functions

Theorem

If f is convex, then every local minimizer x∗ is a global minimizer.

Note: not every function with one global and local minimum is
convex (cf. Rosenbrock function).

Proof (Sketch): Assume that a convex function f has a local
minimizer xloc which is not a global minimizer: f (xloc) > f (x∗).
Then going towards x∗ from xloc minimizes the function value,
hence xloc is not a local minimizer.
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Properties of Convex Functions

Nonnegative weighted sums of convex functions are convex:
for all λ1, . . . , λk ≥ 0 and f1, . . . , fk convex, then the function

f (x) = λ1f1(x) + . . .+ λk fk(x)

is convex.

If g : Rd → Rk , g(x) = Ax + b is an affine map, and
f : Rk → R is a convex function, then the composition

f (g(x)) = f (Ax + b)

is a convex function.

Proof: Exercise
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Examples of Convex Functions

x

y

Every norm is a convex function: for
any x, y ∈ Rd and α ∈ [0, 1] we have:

‖αx + (1− α)y‖ ≤ ‖αx‖+ ‖(1− α)y‖
≤ |α|‖x‖+ |1− α|‖y‖
= α‖x‖+ (1− α)‖y‖

x
y

Every linear function f is convex and
concave (-f is convex): for any
x, y ∈ Rd and α ∈ [0, 1] we have:

f (αx + (1− α)y) = αf (x) + (1− α)f (y)
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Okay nice, so if my
optimization problem is convex
then I only need to find a local

minimium (for example by
gradient descent).
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How do I compute the
gradient? Do I always have to

compute the partial
derivatives?

No, use the chain rule
whenever you can!
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Gradient Descent needs a Gradient

There are two ways to define the derivative of a function

f : Rn×d → R.

∂f (X )

∂X
=


∂f (X )
∂X11

. . . ∂f (X )
∂Xn1

...
. . .

...
∂f (X )
∂X1d

. . . ∂f (X )
∂Xnd

 ∈ Rd×n (Jacobian)

∇f (X ) =


∂f (X )
∂X11

. . . ∂f (X )
∂X1d

...
. . .

...
∂f (X )
∂Xn1

. . . ∂f (X )
∂Xnd

 ∈ Rn×d (Gradient)

Be careful!

This notation is not used by all authors!



Optimization Problems Numerical Optimization Convex optimization Matrix Derivatives

The Jacobian of f

f : Rd → R
∂f (x)

∂x
=
(
∂f (x)
∂x1

. . . ∂f (x)
∂xd

)
∈ R1×d

f : Rn×d → R
∂f (X )

∂X
=


∂f (X )
∂X11

. . . ∂f (X )
∂Xn1

...
. . .

...
∂f (X )
∂X1d

. . . ∂f (X )
∂Xnd

 ∈ Rd×n

f : R→ Rc ∂f(x)

∂x
=


∂f1(x)
∂x
...

∂fc (x)
∂x

 ∈ Rc

f : Rd → Rc ∂f(x)

∂x
=


∂f1(x)
∂x1

. . . ∂f1(x)
∂xd

...
. . .

...
∂fc (x)
∂x1

. . . ∂fc (x)
∂xd

 ∈ Rc×d
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The Gradient of f

f : Rd → R ∇xf (x) =


∂f (x)
∂x1
...

∂f (x)
∂xd

 ∈ Rd

f : Rn×d → R ∇X f (X ) =


∂f (X )
∂X11

. . . ∂f (X )
∂X1d

...
. . .

...
∂f (X )
∂Xn1

. . . ∂f (X )
∂Xnd

 ∈ Rn×d

f : R→ Rc ∇x f(x) =
(
∂f1(x)
∂x . . . ∂fc (x)

∂x

)
∈ R1×c

f : Rd → Rc ∇xf(x) =


∂f1(x)
∂x1

. . . ∂fc (x)
∂x1

...
. . .

...
∂f1(x)
∂xd

. . . ∂fc (x)
∂xd

 ∈ Rd×c
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Most Important Derivation Rules

∇xf(x) =

(
∂f(x)

∂x

)>
∂αf(x) + g(x)

∂x
= α

∂f(x)

∂x
+
∂g(x)

∂x
(linearity)

∂f(g(x))

∂x
=
∂f(g)

∂g

∂g(x)

∂x
(chain rule)

Exercise: Derive the following equations:

∂‖x‖2

∂x
,
∂b− ax

∂x
,
∂b− Ax

∂x
,∇x‖b− Ax‖2,∇X‖D − YX>‖2
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Most Important Derivation Rules

∇xf(x) =

(
∂f(x)

∂x

)>
∂αf(x) + g(x)

∂x
= α

∂f(x)

∂x
+
∂g(x)

∂x
(linearity)

∂f(g(x))

∂x
=
∂f(g)

∂g

∂g(x)

∂x
(chain rule)

Exercise: Derive the following equations:

∂‖x‖2

∂x
,
∂b− ax

∂x
,
∂b− Ax

∂x
,∇x‖b− Ax‖2,∇X‖D − YX>‖2
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