Numerical Optimization

Convex optimization

Matrix Derivatives

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Optimization

Sibylle Hess

Numerical Optimization

Convex optimization

Matrix Derivatives

Optimization

000

Numerical Optimization

Convex optimization

Matrix Derivatives

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - つへで

Unconstrained Optimization Problem

Given an objective function $f : \mathbb{R}^n \to \mathbb{R}$, the objective of an unconstrained optimization problem is:

 $\min_{\mathbf{x}\in\mathbb{R}^n}f(\mathbf{x})$

We say that:

• $x^* \in \underset{x \in \mathbb{R}^n}{\operatorname{arg min}} f(x)$ is a minimizer

• $\min_{\mathsf{x}\in\mathbb{R}^n} f(\mathsf{x})$ is the minimum

Numerical Optimization

Convex optimization

Matrix Derivatives

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ つへつ

Local and Global Minimizers

global minimizer: $x^* = -2$ local minimizer: $x_3 = 1$

A global minimizer is a vector x^* satisfying

 $f(x^*) \leq f(x)$ for all $x \in \mathbb{R}^n$

A local minimizer is a vector x_0 satisfying

 $f(x_0) \leq f(x)$ for all $x \in \mathcal{N}_{\epsilon}(x_0)$,

where $\mathcal{N}_{\epsilon}(\mathsf{x}_0) = \{\mathsf{x} \in \mathbb{R}^n | \|\mathsf{x} - \mathsf{x}_0\| \le \epsilon\}$

Numerical Optimization

Convex optimization

Matrix Derivatives

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - つへの

How can we solve an unconstrained optimization problem?

With FONC and SONC.

 Optimization Problems
 Numerical Optimization
 Convex optimization
 Matrix Derivatives

Finding Stationary Points: our Minimizer Candidates

Every local minimizer x_0 is a stationary point: $\frac{d}{dx}f(x_0) = 0$ (a.k.a. 1st order necessary condition)

Possible local minimizers: $x_1 = -2, x_2 = 0, x_3 = 1$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Numerical Optimization

Convex optimization

Matrix Derivatives

Identifying Minimizers by the Curvature

Every stationary point x_0 with increasing function values around it is a local minimizer: $\frac{d}{dx}f(x_0) = 0 \& \frac{d^2}{dx^2}f(x_0) \ge 0$ (a.k.a 2nd order sufficient condition)

$$rac{d^2}{dx^2}f(-2) = 6 \ge 0, \quad rac{d^2}{dx^2}f(0) = -2 < 0, \quad rac{d^2}{dx^2}f(1) = 3 \ge 0$$

We identify the local minimizers $x_1 = -2$ and $x_2 = 3$.

Numerical Optimization

Convex optimization

Matrix Derivatives

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ つへの

What Happens in Higher Dimensions?

The derivative of a function $f : \mathbb{R}^d \to \mathbb{R}$ is given by its partial derivatives:

$$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} & \dots & \frac{\partial f(\mathbf{x})}{\partial x_d} \end{pmatrix} \in \mathbb{R}^{1 \times d} \qquad \text{(Jacobian)}$$
$$\nabla_{\mathbf{x}} f(\mathbf{x}) = \begin{pmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \vdots \\ \frac{\partial f(\mathbf{x})}{\partial x_d} \end{pmatrix} \in \mathbb{R}^d \qquad \text{(Gradient)}$$

Numerical Optimization

Convex optimization

Matrix Derivatives

▲ロト ▲園 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ - つへの

First Order Necessary Condition

FONC

If x is a local minimizer of $f : \mathbb{R}^d \to \mathbb{R}$ and f is continuously differentiable in an open neighborhood of x, then

 $\nabla f(\mathbf{x}) = \mathbf{0}$

A vector x is called stationary point if $\nabla f(x) = 0$.

Numerical Optimization

Convex optimization

Matrix Derivatives

イロト イポト イミト イミト ミー のくの

Second Order Necessary Condition

SONC

If x is a local minimizer of $f : \mathbb{R}^d \to \mathbb{R}$ and $\nabla^2 f$ is continuous in an open neighborhood of x, then

 $\nabla f(x) = 0$ and $\nabla^2 f(x)$ is positive semidefinite

A matrix $A \in \mathbb{R}^{d \times d}$ is positive semidefinite if

 $\mathbf{x}^{\top} A \mathbf{x} \geq \mathbf{0}$ for all $\mathbf{x} \in \mathbb{R}^d$

Numerical Optimization

Convex optimization

Matrix Derivatives

Example: the Rosenbrock Function

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Numerical Optimization

Convex optimization

Matrix Derivatives

Candidate Minimizers of the Rosenbrock Function

The Rosenbrock function is given by

$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

We compute the gradient and set it to zero:

$$abla f(\mathbf{x}) = egin{pmatrix} 400x_1(x_1^2 - x_2) + 2(x_1 - 1)\ 200(x_2 - x_1^2) \end{pmatrix} = 0, \ \Leftrightarrow \mathbf{x} = (1, 1)$$

According to FONC we have one stationary point, i.e., one local minimizer candidate at $x_0 = (1, 1)$.

Optimization Problems Numerical Optimization Convex optimization Matrix Derivatives

Evaluating the Curvature at the Candidate Minimizer

We compute the Hessian function of f at $x_0 = (1, 1)$:

$$\nabla^2 f(\mathbf{x}) = 200 \begin{pmatrix} 1 & -2x_1 \\ -2x_1 & 6x_1^2 - 2x_2 + 0.01 \end{pmatrix}$$
$$\nabla^2 f(\mathbf{x}_0) = 200 \begin{pmatrix} 1 & -2 \\ -2 & 4.01 \end{pmatrix}$$

We check now if the Hessian is positive semi-definite at the stationary point. Let $x\in \mathbb{R}^2,$ then

$$x^{\top} \nabla^2 f(x_0) x = (x_1 - 2x_2)^2 + 0.01 x_2^2 \ge 0$$

Hence, $\nabla^2 f(x_0)$ is p.s.d. and $x_0 = (1, 1)$ satisfies the SONC for a local minimizer of f.

Numerical Optimization

Convex optimization

Matrix Derivatives

Nice, so finding local minimizers is not a big deal IF we have an unconstrained objective with an objective function which is twice

continuously differentiable.

Numerical Optimization

Convex optimization

Matrix Derivatives

▲ロト ▲園 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ - つへの

Let's consider a more complex setting:

Introducing Constraints

Numerical Optimization

Convex optimization

Matrix Derivatives

Constrained Optimization Problem

Given

- an objective function $f : \mathbb{R}^d \to \mathbb{R}$ and
- constraint functions $c_i, g_k : \mathbb{R}^d \to \mathbb{R}$,

then the objective of an constrained optimization problem is

$$\begin{split} \min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x}) \\ \text{s.t. } c_i(\mathbf{x}) = 0 & \quad \text{for } 1 \leq i \leq m, \\ g_k(\mathbf{x}) \geq 0 & \quad \text{for } 1 \leq k \leq l \end{split}$$

We call the set of vectors satisfying the constraints the feasible set:

$$\mathcal{C} = \{ \mathsf{x} \mid c_i(\mathsf{x}) = 0, g_k(\mathsf{x}) \geq 0 ext{ for } 1 \leq i \leq m, 1 \leq k \leq m \}.$$

Numerical Optimization

Convex optimization

Matrix Derivatives

イロト イポト イミト イミト ミー のくの

How can we solve a constrained optimization tasks?

If we have constraints, then FONC and SONC do not help much anymore..

Numerical Optimization

Convex optimization

Matrix Derivatives

イロト イポト イミト イミト ミー のくの

Can we transform the constrained problem into an unconstrained one?

Yes, maybe, kind of, with the Lagrangian..

Optimization Problems	Numerical Optimization	Convex optimization	Matrix Derivatives
The Lagrangian	Function		

Given a constrained optimization task:

 $\begin{array}{ll} \min_{\mathsf{x}\in\mathbb{R}^n} f(\mathsf{x}) \\ \text{s.t.} \ c_i(\mathsf{x}) = 0 & \quad \text{for } 1 \leq i \leq m, \\ g_k(\mathsf{x}) \geq 0 & \quad \text{for } 1 \leq k \leq l \end{array}$

The Lagrangian function is defined as

$$\mathcal{L}(\mathsf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(\mathsf{x}) - \sum_{i=1}^{m} \boldsymbol{\lambda}_i c_i(\mathsf{x}) - \sum_{k=1}^{l} \boldsymbol{\mu}_k g_k(\mathsf{x}).$$

The parameters $\lambda_i \in \mathbb{R}$ and $\mu_i \geq 0$ are called Lagrange multipliers.

Numerical Optimization

Convex optimization

Matrix Derivatives

▲ロト ▲園 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ - つへの

The Lagrangian Forms a Lower Bound of the Objective

For feasible $\mathsf{x} \in \mathcal{C}$ and $\boldsymbol{\lambda} \in \mathbb{R}^m, \boldsymbol{\mu} \in \mathbb{R}^l$ we have

$$\mathcal{L}(\mathsf{x},\boldsymbol{\lambda},\boldsymbol{\mu}) = f(\mathsf{x}) - \sum_{i=1}^{m} \boldsymbol{\lambda}_{i} \underbrace{c_{i}(\mathsf{x})}_{=0} - \sum_{k=1}^{l} \underbrace{\boldsymbol{\mu}_{k}}_{\geq 0} \underbrace{\mathbf{g}_{k}(\mathsf{x})}_{\geq 0} \leq f(\mathsf{x})$$

This introduces the dual objective function \mathcal{L}_{dual} :

$$\min_{\mathsf{x}\in\mathcal{C}} f(\mathsf{x}) \geq \inf_{\mathsf{x}\in\mathcal{C}} \mathcal{L}(\mathsf{x},\boldsymbol{\lambda},\boldsymbol{\mu}) \geq \inf_{\mathsf{x}\in\mathbb{R}^d} \mathcal{L}(\mathsf{x},\boldsymbol{\lambda},\boldsymbol{\mu}) = \mathcal{L}_{\textit{dual}}(\boldsymbol{\lambda},\boldsymbol{\mu})$$

Numerical Optimization

Convex optimization

Matrix Derivatives

Primal and Dual Problem

Primal Problem

 $\min_{\substack{\mathbf{x}\in\mathbb{R}^n}} f(\mathbf{x}) \\ \text{s.t. } c_i(\mathbf{x}) = 0 \quad 1 \le i \le m, \\ g_k(\mathbf{x}) \ge 0 \quad 1 \le k \le I$

Dual Problem	
$\max_{oldsymbol{\lambda},oldsymbol{\mu}}\mathcal{L}_{\mathit{dual}}(oldsymbol{\lambda},oldsymbol{\mu})$	
s.t. $oldsymbol{\lambda} \in \mathbb{R}^m, oldsymbol{\mu} \in \mathbb{R}_+^l$	

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ つへつ

The solution to the primal problem is always bounded below by the solution to the dual problem $f^* \geq \mathcal{L}^*_{dual}$.

Some conditions yield that $f^* = \mathcal{L}^*_{dual}$, then solving the dual is equivalent to solving the primal.

Numerical Optimization

Convex optimization

Matrix Derivatives

イロト イポト イミト イミト ミー のくの

Okay, so if I have an unconstrained optimization problem then I try FONC and SONC...

Numerical Optimization

Convex optimization

Matrix Derivatives

イロト イポト イミト イミト ミー のくの

... and if I have a constrained optimization problem then I can try to solve it over the dual problem.

Numerical Optimization

Convex optimization

Matrix Derivatives

What if I can't compute the minimizers by these approaches?

Do Numerical Optimization

Optimization Problems	Numerical Optimization	Convex optimization	Matrix Derivatives
Approximating a	Minimizer		

If the minimizers can not be computed directly/analytically, then Numerical Optimization can come to the rescue.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - つへで

The general scheme of numerical optimization methods is:

- 1: function Optimizer(f)
- 2: $x_0 \leftarrow \text{INITIALIZE}(x_0)$

3: for
$$t \in \{1, \ldots, t_{max} - 1\}$$
 do

4:
$$x_{t+1} \leftarrow \text{UPDATE}(x_t, f)$$

- 5: end for
- 6: return $x_{t_{max}}$
- 7: end function

Optimization Problems	Numerical Optimization	Convex optimization	Matrix Derivatives
Coordinate	Descent		

Sometimes, we can not determine the minimum analytically, but the minimum in a coordinate direction.

Coordinate descent update:

$$x_i^{(t+1)} \leftarrow \underset{x_i}{\arg\min} f(x_1^{(t)}, \dots, x_i, \dots, x_d^{(t)}), \quad 1 \le i \le d$$

Coordinate descent minimizes in every step, hence

$$f(x^{(0)}) \ge f(x^{(1)}) \ge f(x^{(2)}) \ge \dots$$

Numerical Optimization

Convex optimization

Matrix Derivatives

Example: Coordinate Descent on the Rosenbrock Function

$$\operatorname*{arg\,min}_{x_1\in\mathbb{R}}f(x_1,x_2)=1$$

$$\arg\min_{x_2\in\mathbb{R}}f(x_1,x_2)=x_1^2$$

Optimization Problems	Numerical Optimization	Convex optimization	Matrix Derivatives
Gradient Descen	t		

If we do not know much but a gradient, we can apply gradient descent.

Gradient descent update:

 $\mathbf{x}_{t+1} \leftarrow \mathbf{x}_t - \eta \nabla f(\mathbf{x}_t)$

where η is the step size.

(日)

The negative gradient points into the direction of steepest descent. Hence, for a small enough step size we obtain a sequence

$$f(\mathsf{x}_0) \geq f(\mathsf{x}_1) \geq f(\mathsf{x}_2) \geq \dots$$

Numerical Optimization

Convex optimization

Matrix Derivatives

Example: Gradient Descent with $\eta = 0.00125$ on the Rosenbrock Function

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

Numerical Optimization

Convex optimization

Matrix Derivatives

Example: Gradient Descent with $\eta = 0.0016$ on the Rosenbrock Function

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

Numerical Optimization

Convex optimization

Matrix Derivatives

Example: Gradient Descent with $\eta = 0.0005$ on the Rosenbrock Function

Numerical Optimization

Convex optimization

Matrix Derivatives

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - つへで

With every run of numerical optimization I get one minimizer candidate. How do I know if I can do bettter? Analyze the optimization problem!

Numerical Optimization

Convex optimization

イロト イボト イヨト イヨト

Matrix Derivatives

When every local minimizer is a global minimizer:

Convex Optimization

Optimization Problems	Numerical Optimization	Convex optimization	Matrix Derivatives
Convex Sets			

A set $\mathcal{X} \subseteq \mathbb{R}^d$ is convex if and only if the line segment between every pair of points in the set is in the set.

That is, for all $x, y \in \mathcal{X}$ and $\alpha \in [0, 1]$

 $\alpha x + (1 - \alpha)y \in \mathcal{X}.$

Optimization Problems	Numerical Optimization	Convex optimization	Matrix Derivatives
Convex Function	S		

A function $f : \mathbb{R}^d \to \mathbb{R}$ is convex if and only if for every $\alpha \in [0, 1]$, and x, y $\in \mathbb{R}^d$:

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

ロトメ団トメミトメミトーミーのAC

Numerical Optimization

Convex optimization

Matrix Derivatives

▶ ★ 문 ▶ ★ 문 ▶ ... 문

Convex Optimization Problem

Given

- a convex objective function $f : \mathbb{R}^d \to \mathbb{R}$ and
- a convex feasible set $\mathcal{C} \subseteq \mathbb{R}^d$

then the objective of a convex optimization problem is

 $\min_{x \in \mathbb{R}^n} f(x)$
s.t. $x \in C$

Numerical Optimization

Convex optimization

Matrix Derivatives

▶ ★ 臣 ▶ ★ 臣 ▶ 二 臣

Properties of Convex Functions

Theorem

If f is convex, then every local minimizer x^* is a global minimizer.

Note: not every function with one global and local minimum is convex (cf. Rosenbrock function).

Proof (Sketch): Assume that a convex function f has a local minimizer x_{loc} which is not a global minimizer: $f(x_{loc}) > f(x^*)$. Then going towards x^* from x_{loc} minimizes the function value, hence x_{loc} is not a local minimizer.

Optimization Problems	Numerical Optimization	Convex optimization	Matrix Derivatives
Properties of C	onvex Functions		

Nonnegative weighted sums of convex functions are convex: for all $\lambda_1, \ldots, \lambda_k \ge 0$ and f_1, \ldots, f_k convex, then the function

$$f(\mathsf{x}) = \lambda_1 f_1(\mathsf{x}) + \ldots + \lambda_k f_k(\mathsf{x})$$

is convex.

■ If $g : \mathbb{R}^d \to \mathbb{R}^k$, g(x) = Ax + b is an affine map, and $f : \mathbb{R}^k \to \mathbb{R}$ is a convex function, then the composition

$$f(g(\mathsf{x})) = f(A\mathsf{x} + \mathsf{b})$$

is a convex function.

Proof: Exercise

Numerical Optimization

Convex optimization

Matrix Derivatives

Examples of Convex Functions

Every norm is a convex function: for any $x, y \in \mathbb{R}^d$ and $\alpha \in [0, 1]$ we have:

$$\begin{aligned} |\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}|| &\leq ||\alpha \mathbf{x}|| + ||(1 - \alpha)\mathbf{y}|| \\ &\leq |\alpha|||\mathbf{x}|| + |1 - \alpha|||\mathbf{y}|| \\ &= \alpha ||\mathbf{x}|| + (1 - \alpha)||\mathbf{y}|| \end{aligned}$$
very linear function f is convex and

Every linear function f is convex a concave (-f is convex): for any $x, y \in \mathbb{R}^d$ and $\alpha \in [0, 1]$ we have:

$$f(\alpha \mathsf{x} + (1 - \alpha)\mathsf{y}) = \alpha f(\mathsf{x}) + (1 - \alpha)f(\mathsf{y})$$

(ロト・日本・日本・日本・日本・今日)

Numerical Optimization

Convex optimization

Matrix Derivatives

Okay nice, so if my optimization problem is convex then I only need to find a local minimium (for example by gradient descent).

Numerical Optimization

Convex optimization

Matrix Derivatives

How do I compute the gradient? Do I always have to compute the partial derivatives?

No, use the chain rule whenever you can!

Optimization Problems Numerical Optimization Convex optimization Matrix Derivatives

Gradient Descent needs a Gradient

There are two ways to define the derivative of a function

$$f:\mathbb{R}^{n\times d}\to\mathbb{R}.$$

$$\frac{\partial f(X)}{\partial X} = \begin{pmatrix} \frac{\partial f(X)}{\partial X_{11}} & \cdots & \frac{\partial f(X)}{\partial X_{n1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f(X)}{\partial X_{1d}} & \cdots & \frac{\partial f(X)}{\partial X_{nd}} \end{pmatrix} \in \mathbb{R}^{d \times n} \quad \text{(Jacobian)}$$
$$\nabla f(X) = \begin{pmatrix} \frac{\partial f(X)}{\partial X_{11}} & \cdots & \frac{\partial f(X)}{\partial X_{1d}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f(X)}{\partial X_{n1}} & \cdots & \frac{\partial f(X)}{\partial X_{nd}} \end{pmatrix} \in \mathbb{R}^{n \times d} \quad \text{(Gradient)}$$

イロト イロト イヨト イヨト

Be careful!

This notation is not used by all authors!

Numerical Optimization

Convex optimization

Matrix Derivatives

The Jacobian of f

$$f: \mathbb{R}^{d} \to \mathbb{R} \qquad \frac{\partial f(x)}{\partial x} = \begin{pmatrix} \frac{\partial f(x)}{\partial x_{1}} & \dots & \frac{\partial f(x)}{\partial x_{d}} \end{pmatrix} \in \mathbb{R}^{1 \times d}$$

$$f: \mathbb{R}^{n \times d} \to \mathbb{R} \qquad \frac{\partial f(X)}{\partial X} = \begin{pmatrix} \frac{\partial f(X)}{\partial X_{11}} & \dots & \frac{\partial f(X)}{\partial X_{n1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f(X)}{\partial X_{1d}} & \dots & \frac{\partial f(X)}{\partial X_{nd}} \end{pmatrix} \in \mathbb{R}^{d \times n}$$

$$f: \mathbb{R} \to \mathbb{R}^{c} \qquad \frac{\partial f(x)}{\partial x} = \begin{pmatrix} \frac{\partial f_{1}(x)}{\partial x} \\ \vdots \\ \frac{\partial f_{c}(x)}{\partial x} \end{pmatrix} \in \mathbb{R}^{c}$$

$$f: \mathbb{R}^{d} \to \mathbb{R}^{c} \qquad \frac{\partial f(x)}{\partial x} = \begin{pmatrix} \frac{\partial f_{1}(x)}{\partial x_{1}} & \dots & \frac{\partial f_{1}(x)}{\partial x_{d}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{c}(x)}{\partial x_{1}} & \dots & \frac{\partial f_{c}(x)}{\partial x_{d}} \end{pmatrix} \in \mathbb{R}^{c \times d}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

Numerical Optimization

Convex optimization

Matrix Derivatives

The Gradient of f

$$f: \mathbb{R}^{d} \to \mathbb{R} \qquad \nabla_{x} f(x) = \begin{pmatrix} \frac{\partial f(x)}{\partial x_{1}} \\ \vdots \\ \frac{\partial f(x)}{\partial x_{d}} \end{pmatrix} \in \mathbb{R}^{d}$$
$$f: \mathbb{R}^{n \times d} \to \mathbb{R} \qquad \nabla_{X} f(X) = \begin{pmatrix} \frac{\partial f(X)}{\partial X_{11}} & \cdots & \frac{\partial f(X)}{\partial X_{1d}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f(X)}{\partial X_{n1}} & \cdots & \frac{\partial f(X)}{\partial X_{nd}} \end{pmatrix} \in \mathbb{R}^{n \times d}$$
$$f: \mathbb{R} \to \mathbb{R}^{c} \qquad \nabla_{x} f(x) = \begin{pmatrix} \frac{\partial f_{1}(x)}{\partial x} & \cdots & \frac{\partial f_{c}(x)}{\partial x} \\ \frac{\partial f_{1}(x)}{\partial x} & \cdots & \frac{\partial f_{c}(x)}{\partial x} \end{pmatrix} \in \mathbb{R}^{1 \times c}$$
$$f: \mathbb{R}^{d} \to \mathbb{R}^{c} \qquad \nabla_{x} f(x) = \begin{pmatrix} \frac{\partial f_{1}(x)}{\partial x_{1}} & \cdots & \frac{\partial f_{c}(x)}{\partial x_{1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{1}(x)}{\partial x_{d}} & \cdots & \frac{\partial f_{c}(x)}{\partial x_{d}} \end{pmatrix} \in \mathbb{R}^{d \times c}$$

Numerical Optimization

Convex optimization

Matrix Derivatives

Most Important Derivation Rules

$$\nabla_{x} f(x) = \left(\frac{\partial f(x)}{\partial x}\right)^{\top}$$
$$\frac{\partial \alpha f(x) + g(x)}{\partial x} = \alpha \frac{\partial f(x)}{\partial x} + \frac{\partial g(x)}{\partial x} \qquad \text{(linearity)}$$
$$\frac{\partial f(g(x))}{\partial x} = \frac{\partial f(g)}{\partial g} \frac{\partial g(x)}{\partial x} \qquad \text{(chain rule)}$$

Exercise: Derive the following equations:

$$\frac{\partial \|\mathbf{x}\|^2}{\partial \mathbf{x}}, \frac{\partial \mathbf{b} - \mathbf{a}\mathbf{x}}{\partial \mathbf{x}}, \frac{\partial \mathbf{b} - A\mathbf{x}}{\partial \mathbf{x}}, \nabla_{\mathbf{x}} \|\mathbf{b} - A\mathbf{x}\|^2, \nabla_{\mathbf{X}} \|D - YX^\top\|^2$$

▲ロト ▲舂 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 … 釣ん(?)

Numerical Optimization

Convex optimization

Matrix Derivatives

Most Important Derivation Rules

$$\nabla_{\mathbf{x}} \mathbf{f}(\mathbf{x}) = \left(\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}}\right)^{\top}$$
$$\frac{\partial \alpha \mathbf{f}(\mathbf{x}) + \mathbf{g}(\mathbf{x})}{\partial \mathbf{x}} = \alpha \frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}} + \frac{\partial \mathbf{g}(\mathbf{x})}{\partial \mathbf{x}} \qquad \text{(linearity)}$$
$$\frac{\partial \mathbf{f}(\mathbf{g}(\mathbf{x}))}{\partial \mathbf{x}} = \frac{\partial \mathbf{f}(\mathbf{g})}{\partial \mathbf{g}} \frac{\partial \mathbf{g}(\mathbf{x})}{\partial \mathbf{x}} \qquad \text{(chain rule)}$$

Exercise: Derive the following equations:

$$\frac{\partial \|\mathbf{x}\|^2}{\partial \mathbf{x}}, \frac{\partial \mathbf{b} - \mathbf{a}\mathbf{x}}{\partial \mathbf{x}}, \frac{\partial \mathbf{b} - A\mathbf{x}}{\partial \mathbf{x}}, \nabla_{\mathbf{x}} \|\mathbf{b} - A\mathbf{x}\|^2, \nabla_{\mathbf{X}} \|D - Y\mathbf{X}^\top\|^2$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 二 臣 … の Q ()