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The Most Important Slide of the k-means Lecture

Theorem (Equivalent k-means objectives)

The following objectives are equivalent

min
Y ,X

r∑
s=1

n∑
i=1

Yis‖Di · − X>·s ‖2 s.t. X ∈ Rd×r ,Y ∈ 1n×r (1)

min
Y
‖D − YX>‖2 s.t. X = D>Y (Y>Y )−1,Y ∈ 1n×r (2)

min
Y ,X

‖D − YX>‖2 s.t. X ∈ Rd×r ,Y ∈ 1n×r (3)
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1

Informal Problem Description
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Problem: k-means can Only Identify Convex Clusters

k-means
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The cluster-separating
boundary between two

centroids is always linear.
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What do we do if we have
nonlinearly separated clusters?

Feature Transformation and
Kernel Trick



tuelogo

Recap kernel k-means Minimum Cut Clustering

How was that Again with Kernels?

Use a feature transformation to map points to a space where
clusters are linearly separable:

x→ φ(x).

Problem: Computing φ(x) for every data point might be costly or
impossible, φ(x) might be infinite-dimensional (see RBF kernel).

Solution: We don’t need φ, we just need the inner product

φ(x)>φ(y)
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The Kernel Matrix

Defining for D ∈ Rn×d the row-wise applied feature transformation

φ(D) =

−− φ(D1·) −−
...

−− φ(Dn·) −−

 ,

the kernel matrix is given by

K = φ(D)φ(D)> ∈ Rn×n.
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2

Derive the Formal Problem
Definition
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The Kernel k-means Objective

Given: a data matrix D ∈ Rn×d , a feature transformation
φ : Rd → Rp mapping into a p-dimensional feature space, where
p ∈ N ∪ {∞}, and the number of clusters r .

Find: clusters indicated by the matrix Y ∈ 1n×r which minimize
the within cluster scatter in the transformed feature space

min
Y
‖φ(D)− YX>‖2 s.t. X = φ(D>)Y (Y>Y )−1,Y ∈ 1n×r (4)
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3

Optimization
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If we want to apply the kernel
trick, then we need to state the
kernel k-means objective with
respect to the inner product of

data points.
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Representing Data by the Inner Product Only

Theorem (k-means trace objective)

The k-means objective in Eq. (1) is equivalent to

max
Y

tr(Z>DD>Z ) s.t. Z = Y (Y>Y )−1/2,Y ∈ 1n×r (5)

Interpretation: Clusters are now defined with respect to the inner
product similarity:

sim(i , j) = Di ·D
>
j · = cos(^(Di ·,Dj ·))‖Di ·‖‖Dj ·‖

Points within one cluster need to be similar:

tr(Z>DD>Z ) =
r∑

s=1

Y>·s DD
>Y·s

|Y·s |
=

r∑
s=1

1

|Cs |
∑
i ,j∈Cs

Di ·D
>
j ·
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The Inner Product Similarity and Convex Clusters
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The Inner Product Similarity and Nonconvex Clusters
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Kernel k-means

Theorem (Equivalent kernel k-means objectives)

Given the kernel matrix K = φ(D)φ(D)>, the following objectives
are equivalent:

min
Y
‖φ(D)− YX>‖2 s.t. X = φ(D>)Y (Y>Y )−1,Y ∈ 1n×r (6)

max
Y

tr(Z>KZ ) s.t. Z = Y (Y>Y )−1/2,Y ∈ 1n×r (7)

Problem: We do not know how to optimize Eq. (7), we only know
how to optimize Eq. (6), but we do not want to compute φ!
Idea: We go the other way round: from the kernel matrix to the
inner product.
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Eigendecomposition of Symmetric Matrices

Theorem (Eigendecomposition of symmetric matrices)

For every symmetric matrix K = K> ∈ Rn×n there exists an
orthogonal matrix V ∈ Rn×n and a diagonal matrix
Λ = diag(λ1, . . . , λn) where |λ1| ≥ . . . ≥ |λn| such that

K = VΛV>

Every symmetric matrix K ∈ Rn×n has a symmetric decomposition
K = A>A if and only if the eigenvalues of K are nonnegative.
This is equivalent to K being positive semi-definite.

Kernel matrices are positive semi-definite!
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Kernel k-means Inside Out

Theorem (Equivalent kernel k-means objectives)

Given a kernel matrix and its symmetric decomposition K = AA>,
the following objectives are equivalent:

min
Y
‖A− YX>‖2 s.t. X = A>Y (Y>Y )−1,Y ∈ 1n×r (8)

max
Y

tr(Z>KZ ) s.t. Z = Y (Y>Y )−1/2,Y ∈ 1n×r (9)

Algorithm Idea: Use the objective in Eq. (8): compute a symmetric
decomposition AA> = K by means of the eigendecomposition
A = VΛ1/2 and run k-means on A.
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The Kernel k-means Algorithm

1: function kernelKMeans(r ,K )
2: (V ,Λ)← Eigendecomposition(K )
3: A← VΛ1/2 . AA> = K
4: (X ,Y )←kMeans(A,r)
5: return Y
6: end function



tuelogo

Recap kernel k-means Minimum Cut Clustering

Let’s try this kernel k-means
idea on the two circles dataset.
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1. The Inner Product Similarity of the RBF Kernel

Kij = exp
(
−ε‖Di · − Dj ·‖2

)
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2. Apply k-means on the Symmetric Factor Matrix

We apply k-means on the matrix VΛ1/2 and obtain a perfect
clustering for a suitable choice of ε = 0.3 as depicted below:
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Ok, so in theory we have a
method to solve kernel

k-means, but in practice this
method is not often employed.
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Drawbacks of kernel k-means
is a lack of robustness and the

requirement of a full
eigendecomposition.
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A related method based on a
graph representation of the
data facilitates nonconvex

clustering based on a truncated
eigendecomposition.
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1

Informal Problem Description



tuelogo

Recap kernel k-means Minimum Cut Clustering

Clustering a Graph Indicated by a Similarity Matrix
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Interpretation of the Data as a Graph
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Every data point is a node.

The weight of an edge reflects
the similarity between
connected nodes.
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Similarity Measures: Epsilon Neighborhood

Wij =

{
1 if ‖Di · − Dj ·‖ < ε

0 otherwise



tuelogo

Recap kernel k-means Minimum Cut Clustering

Similarity Measures: K-nearest neighbors (K=5)

Nij =

{
1 if Di · ∈ KNN(Dj ·)

0 otherwise
, W =

1

2
(N + N>)
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2

Derive the Formal Problem
Definition
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The Weighted Adjacency Matrix

2 3

6

45

1

1

2

3

4

5

6

7
8

9
W =



0 6 0 0 5 0
6 0 1 0 7 0
0 1 0 9 8 2
0 0 9 0 4 3
5 7 8 4 0 0
0 0 2 3 0 0
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Computing the Similarity Within a Cluster

2 3

6

45

1

5

6

7

4

1

2

3

8
9

Y>·s =
(
1 1 0 0 1 0

)
Y>·s WY·s = 2(5 + 6 + 7)

Sim(Y ;W ) = tr(Y>WY (Y>Y )−1)

=
r∑

s=1

Y>·s WY·s
|Y·s |

=
r∑

s=1

1

|Cs |
∑
i ,j∈Cs

Wji
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Computing the Cut of a Cluster
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Y>·s =

(
1 1 0 0 1 0

)
Y>·s W (1− Y·s) = 1 + 8 + 4

Cut(Y ;W ) = tr((1− Y )>WY (Y>Y )−1)

=
r∑

s=1

(1− Y·s)>WY·s
|Y·s |

=
r∑

s=1

1

|Cs |
∑
i /∈Cs

∑
j∈Cs

Wij
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Maximum Similarity vs. Minimum Cut
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There are principally two ways to define clusters of graphs:

1 maximize the sum of weights within clusters

2 minimize the sum of weights between clusters
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Maximum Similarity Graph Clustering

Given: a graph indicated by a symmetric, nonnegative similarity
matrix W ∈ Rn×n

+ , and the number of clusters r .

Find: clusters indicated by the matrix Y ∈ 1n×r which maximize
the similarity of points within a cluster

max
Y

Sim(Y ;W ) = tr(Y>WY (Y>Y )−1) s.t. Y ∈ 1n×r
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Minimum Cut Graph Clustering

Given: a graph indicated by a symmetric, nonnegative similarity
matrix W ∈ Rn×n

+ , and the number of clusters r .

Find: clusters indicated by the matrix Y ∈ 1n×r which minimize
the cut of all clusters

min
Y

Cut(Y ;W ) = tr((1− Y )>WY (Y>Y )−1) s.t. Y ∈ 1n×r
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3

Optimization



tuelogo

Recap kernel k-means Minimum Cut Clustering

The Degree Matrix

We have Y>·s WY·s ≤ Y·s IWY·s where IW is the degree matrix:
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IW =



11 0 0 0 0 0
0 14 0 0 0 0
0 0 20 0 0 0
0 0 0 16 0 0
0 0 0 0 24 0
0 0 0 0 0 5


Y>·s WY·s = Y>·s IWY·s if and only if Y·s indicates a connected
component. This is equivalent to

Y>·s (IW −W )︸ ︷︷ ︸
=L

Y·s = 0

The matrix L = IW −W is called graph Laplacian.
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Relation of Minimum Cut and Maximum Similarity

Theorem (Minimum Cut and Maximum Similarity )

Given a symmetric similarity matrix W ∈ Rn×n
+ , the degree matrix

IW and the Graph Laplacian L = IW −W , then the following
objectives are equivalent:

min
Y

Cut(Y ;W ) = tr((1− Y )>WY (Y>Y )−1) s.t Y ∈ 1n×r

max
Y

Sim(Y ;−L) = tr(Y>(−L)Y (Y>Y )−1) s.t Y ∈ 1n×r

The maximum similarity objective is equal to the kernel k-means
objective. However, note that −L is not a kernel matrix (it’s
negative semi-definite).
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Eigenvalues of Graph Laplacians

Proposition (Connected Components and Eigenvectors)

Given a graph indicated by the symmetric matrix W ∈ Rn×n
+ , then

the indicator vectors of the connected components are eigenvectors
of the Laplacian L = IW −W to the smallest eigenvalue 0.

Proof (sketch): For every connected component there exists an
order of columns and rows such that W has a block-diagonal form:

Wv =

W11 . . . W1c

...
... 0

Wc1 . . . Wcc

0 Ŵ




1

...

1

0



 =

|W1· |
...

|Wc· |
0



 = IW v .



tuelogo

Recap kernel k-means Minimum Cut Clustering

The standard method to solve
the minimum cut objective is

called Spectral Clustering.
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The idea of Spectral Clustering
is the same as of kernel

k-means with few alterations.
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Instead of using the full
eigendecomposition, Spectral

Clustering uses only the first r
meaningful eigenvectors which

are not indicating the
connected component.
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The Spectral Clustering Algorithm

Requirement

The parameters of the similarity measure should be chosen such
that the graph is connected!

1: function spectralClustering(r ,D,Sim)
2: W ← sim(D) . Compute Similarity matrix
3: L← IW −W . Compute Graph Laplacian
4: (V ,Λ)← TruncatedEigendecomposition(L, r + 1)
5: A← V·{2,...,r+1} . Remove connected component
6: (X ,Y )←kMeans(A,r)
7: return Y
8: end function
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Spectral Clustering with 10NN Similarity Matrix and Lsym

In practice, the weighted adjacency matrix is often normalized.
The corresponding Graph Laplacian is often denoted by

Lsym = I − I
−1/2
W WI

−1/2
W

Spect. Clustering
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The Most Important Slide of this Lecture

Theorem (Equivalent k-means objectives)

The following objectives are equivalent

min
Y
‖D − YX>‖2 s.t. X = D>Y (Y>Y )−1,Y ∈ 1n×r

min
Y ,X

‖D − YX>‖2 s.t. X ∈ Rd×r ,Y ∈ 1n×r

max
Y

tr(Z>DD>Z ) s.t. Z = Y (Y>Y )−1/2,Y ∈ 1n×r
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