Linear Algebra - Best of

Sibylle Hess

Vector Spaces

Vector Spaces

A vector space over the real numbers is a set of vectors \mathcal{V} with two operations + and \cdot such that the following properties hold:
$■$ Addition: for v, w we have $\mathrm{v}+\mathrm{w} \in \mathcal{V}$. The set of vectors with the addition $(\mathcal{V},+)$ is an abelian group.
■ Scalar multiplication: for $\alpha \in \mathbb{R}$ and $\mathrm{v} \in \mathcal{V}$, we have $\alpha \mathbf{v} \in \mathcal{V}$ such that the following properties hold:

■ $\alpha(\beta \mathrm{v})=(\alpha \beta) \mathrm{v}$ for $\alpha, \beta \in \mathbb{R}$ and $\mathbf{v} \in \mathcal{V}$

- $1 \mathrm{v}=\mathrm{v}$ for $\mathrm{v} \in \mathcal{V}$

■ Distributivity: the following properties hold:
■ $(\alpha+\beta) \mathbf{v}=\alpha \mathbf{v}+\beta \mathbf{v}$ for $\alpha, \beta \in \mathbb{R}$ and $\mathbf{v} \in \mathcal{V}$

- $\alpha(\mathrm{v}+\mathrm{w})=\alpha \mathrm{v}+\alpha \mathrm{w}$ for $\alpha \in \mathbb{R}$ and $\mathrm{v}, \mathrm{w} \in \mathcal{V}$

What is Allowed in a Vector Space?

A vector space is a structure where you can do most operations you know from real numbers, but not all. Let $\alpha \in \mathbb{R}, \mathrm{v}, \mathrm{w} \in \mathcal{V}$.

The following operations are well-defined:
■ $\mathrm{v} / \alpha=\frac{1}{\alpha} \mathrm{v}$ for $\alpha \neq 0$

- v-w

What you can not do:
■ V•W

- α / v

The Vector Space \mathbb{R}^{d}

The elements of the vector space \mathbb{R}^{d} are d-dimensional vectors

$$
v=\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{d}
\end{array}\right), \quad v_{i} \in \mathbb{R} \text { for } 1 \leq i \leq d
$$

For vectors, the addition between vectors and the scalar multiplication are defined for $\mathrm{v}, \mathrm{w} \in \mathbb{R}^{d}$ and $\alpha \in \mathbb{R}$ as

$$
\mathrm{v}+\mathrm{w}=\left(\begin{array}{c}
v_{1}+w_{1} \\
\vdots \\
v_{d}+w_{d}
\end{array}\right), \alpha \mathrm{v}=\left(\begin{array}{c}
\alpha v_{1} \\
\vdots \\
\alpha v_{d}
\end{array}\right)
$$

Example: the Vector Space \mathbb{R}^{2}

$$
\begin{aligned}
v & =\binom{0.5}{1.5} \\
w & =\binom{2}{0.5} \\
v+w & =\binom{2.5}{2} \\
2 v & =\binom{1}{3}
\end{aligned}
$$

Are there other important vector spaces next to \mathbb{R}^{d} ?

Yes, the vector space of matrices $\mathbb{R}^{n \times d}$.

Why are matrices important?

Because data is represented as

 a matrix.
Data Representation by a Matrix

ID	F_{1}	$\mathrm{~F}_{2}$	$\mathrm{~F}_{3}$	\ldots	$\mathrm{~F}_{d}$
1	5.1	3.5	1.4	\ldots	0.2
2	6.4	3.5	4.5	\ldots	1.2
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
n	5.9	3.0	5.0	\ldots	1.8

A data table of n observations of d features is represented by a $(n \times d)$ matrix.

Matrices and Their Notation

An ($n \times d$) matrix concatenates $n d$-dimensional vectors column-wise ($A_{\cdot j}$ denotes the column-vector j of A)

$$
A=\left(\begin{array}{ccc}
\mid & & \mid \\
A_{\cdot 1} & \ldots & A_{\cdot d} \\
\mid & & \mid
\end{array}\right)=\left(\begin{array}{ccc}
A_{11} & \ldots & A_{1 d} \\
\vdots & & \vdots \\
A_{n 1} & \ldots & A_{n d}
\end{array}\right)
$$

Simultaneously, we can see a matrix as concatenation of d row-vectors (A_{i}.):

$$
A=\left(\begin{array}{ccc}
- & A_{1} & - \\
& \vdots & \\
- & A_{n} & -
\end{array}\right)=\left(\begin{array}{ccc}
A_{11} & \ldots & A_{1 d} \\
\vdots & & \vdots \\
A_{n 1} & \ldots & A_{n d}
\end{array}\right)
$$

The Vector Space $\mathbb{R}^{n \times d}$

The elements of the vector space $\mathbb{R}^{n \times d}$ are $(n \times d)$-dimensional matrices.

The addition between matrices and the scalar multiplication are defined for $A, B \in \mathbb{R}^{n \times d}$ and $\alpha \in \mathbb{R}$ as

$$
\begin{aligned}
A+B & =\left(\begin{array}{ccc}
A_{11}+B_{11} & \ldots & A_{1 d}+B_{1 d} \\
\vdots & & \vdots \\
A_{n 1}+B_{n 1} & \ldots & A_{n d}+B_{n d}
\end{array}\right) \\
\alpha A & =\left(\begin{array}{ccc}
\alpha A_{11} & \ldots & \alpha A_{1 d} \\
\vdots & & \vdots \\
\alpha A_{n 1} & \ldots & \alpha A_{n d}
\end{array}\right)
\end{aligned}
$$

Matrix Operations:

The Transpose

The Transpose of a Matrix Swaps the Dimensionality

The transpose of a matrix changes row-vectors into column vectors and vice versa:

$$
\begin{aligned}
A=\left(\begin{array}{ccc}
\mid & & \mid \\
A_{\cdot 1} & \ldots & A_{\cdot d} \\
\mid & & \mid
\end{array}\right)=\left(\begin{array}{ccc}
A_{11} & \ldots & A_{1 d} \\
\vdots & & \vdots \\
A_{n 1} & \ldots & A_{n d}
\end{array}\right) \in \mathbb{R}^{n \times d} \\
A^{\top}=\left(\begin{array}{ccc}
- & A_{\cdot 1}^{\top} & - \\
& \vdots & \\
- & A_{\cdot d}^{\top} & -
\end{array}\right) \quad=\left(\begin{array}{ccc}
A_{11} & \ldots & A_{n 1} \\
\vdots & & \vdots \\
A_{1 d} & \ldots & A_{n d}
\end{array}\right) \in \mathbb{R}^{d \times n}
\end{aligned}
$$

The Transpose of a Column Vector Makes it a Row Vector

The transpose of a d-dimensional vector has an interpretation as transpose of a $(d \times 1)$ matrix:

$$
\begin{array}{rlrl}
v & =\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{d}
\end{array}\right) & & \in \mathbb{R}^{d \times 1} \\
v^{\top} & =\left(\begin{array}{lll}
v_{1} & \ldots & v_{d}
\end{array}\right) & \in \mathbb{R}^{1 \times d}
\end{array}
$$

The Transpose of the Transpose Returns the Original Matrix

For any matrix $A \in \mathbb{R}^{n \times d}$ we have $A^{\top \top}=A$

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) \quad A^{\top}=\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right) \quad A^{\top^{\top}}=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)
$$

Symmetric Matrices are Invariant to Transposition

A symmetric matrix is a matrix $A \in \mathbb{R}^{n \times n}$ such that $A^{\top}=A$:

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 5 & 6 \\
3 & 6 & 7
\end{array}\right)
$$

$$
A^{\top}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 5 & 6 \\
3 & 6 & 7
\end{array}\right)
$$

Diagonal Matrices are Symmetric

A diagonal matrix is a symmetric matrix having only nonzero elements on the diagonal:

$$
\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)=\left(\begin{array}{cccc}
a_{1} & 0 & \ldots & 0 \\
0 & a_{2} & \ldots & 0 \\
& & \ddots & \\
0 & 0 & \ldots & a_{n}
\end{array}\right)
$$

Okay, great, we can add, scale and transpose matrices/data. Isn't that kinda lame?

Yah, it gets interesting with the matrix product.

Inner and Outer Product of Vectors

The inner product of two vectors $v, w \in \mathbb{R}^{d}$ returns a scalar:

$$
v^{\top} w=\left(\begin{array}{lll}
v_{1} & \ldots & v_{d}
\end{array}\right)\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{d}
\end{array}\right)=\sum_{i=1}^{d} v_{i} w_{i}
$$

The outer product of two vectors $v \in \mathbb{R}^{d}$ and $w \in \mathbb{R}^{n}$ returns a $(d \times n)$ matrix:

$$
\mathrm{vw}^{\top}=\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{d}
\end{array}\right)\left(\begin{array}{lll}
w_{1} & \ldots & w_{n}
\end{array}\right)=\left(\begin{array}{c}
v_{1} \mathrm{w}^{\top} \\
\vdots \\
v_{d} \mathrm{w}^{\top}
\end{array}\right)=\left(\begin{array}{ccc}
v_{1} w_{1} & \ldots & v_{1} w_{n} \\
\vdots & & \vdots \\
v_{d} w_{1} & \ldots & v_{d} w_{n}
\end{array}\right)
$$

Matrix Multiplication

Given $A \in \mathbb{R}^{n \times r}$ and $B \in \mathbb{R}^{r \times d}$, the matrix product $C=A B \in \mathbb{R}^{n \times d}$ is defined as

$$
C=\left(\begin{array}{ccc}
A_{1} \cdot B \cdot 1 & \ldots & A_{1} \cdot B \cdot d \\
\vdots & & \vdots \\
A_{n} \cdot B \cdot 1 & \ldots & A_{n} \cdot B \cdot d
\end{array}\right)=\left(\begin{array}{ccc}
- & A_{1} \cdot & - \\
& \vdots & \\
- & A_{n} \cdot & -
\end{array}\right)\left(\begin{array}{ccc}
\mid & & \mid \\
B \cdot 1 & \ldots & B \cdot d \\
\mid & & \mid
\end{array}\right)
$$

Every element $C_{j i}$ is computed by the inner product of row j and column i (row-times-column)

$$
C_{j i}=A_{j} \cdot B_{\cdot i}=\sum_{s=1}^{r} A_{j s} B_{s i}
$$

Another View on Matrix Multiplication

Given $A \in \mathbb{R}^{n \times r}$ and $B \in \mathbb{R}^{r \times d}$, we can also state the product $C=A B$ in terms of the outer product:
$C=\sum_{s=1}^{r}\left(\begin{array}{ccc}A_{1 s} B_{s 1} & \ldots & A_{1 s} B_{s d} \\ \vdots & & \vdots \\ A_{n s} B_{s 1} & \ldots & A_{n s} B_{s d}\end{array}\right)=\left(\begin{array}{ccc}\mid & & \mid \\ A_{\cdot 1} & \ldots & A_{\cdot r} \\ \mid & & \mid\end{array}\right)\left(\begin{array}{ccc}- & B_{1 .} & - \\ & \vdots & \\ - & B_{r .} & -\end{array}\right)$
The matrix product is the sum of outer products of corresponding column- and row-vectors (column-times-row):

$$
C=\sum_{s=1}^{r}\left(\begin{array}{c}
\mid \\
A_{\cdot s} \\
\mid
\end{array}\right)\left(\begin{array}{lll}
- & B_{s .} & -
\end{array}\right)=\sum_{s=1}^{r} A_{\cdot s} B_{s .}
$$

Multiplying the Identity Matrix Doesn't Change Anything

The identity matrix I is a diagonal matrix having only ones on the diagonal:

$$
I_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Given $A \in \mathbb{R}^{n \times d}$, and I_{n} the $(n \times n)$ identity matrix and I_{d} the $(d \times d)$ identity matrix, then we have

$$
I_{n} A=A=A I_{d}
$$

The Transpose of a Matrix Product

We have for $A \in \mathbb{R}^{n \times r}, B \in \mathbb{R}^{r \times d}$ and $C=A B$

$$
\begin{aligned}
C^{\top} & =\left(\begin{array}{ccc}
A_{1} \cdot B_{1} & \ldots & A_{1} \cdot B_{\cdot d} \\
\vdots & & \vdots \\
A_{n} \cdot B_{1} & \ldots & A_{n} \cdot B_{d}
\end{array}\right)^{\top}=\left(\begin{array}{ccc}
A_{1} \cdot B_{1} & \ldots & A_{n} \cdot B_{1} \\
\vdots & & \vdots \\
A_{1} \cdot B_{\cdot d} & \ldots & A_{n} \cdot B_{d}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
B_{\cdot 1}^{\top} A_{1}^{\top} & \ldots & B_{\cdot 1}^{\top} A_{n}^{\top} \cdot \\
\vdots & & \vdots \\
B_{\cdot d}^{\top} A_{1}^{\top} & \ldots & B_{\cdot d}^{\top} A_{n \cdot}^{\top}
\end{array}\right)=B^{\top} A^{\top}
\end{aligned}
$$

If we can multiply matrices, can we then also divide by them?

Just sometimes, if the matrix has an inverse.

Inverse Matrices

The inverse matrix to a matrix $A \in \mathbb{R}^{n \times n}$ is a matrix A^{-1} satisfying

$$
A A^{-1}=A^{-1} A=I
$$

Diagonal matrices with nonzero elements on the diagonal have an inverse:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{3}
\end{array}\right)=1
$$

Okay, but why is this now interesting?

Because matrix multiplication
is computable fast, and almost every data operation can be written as a matrix operation.

Matrix Product Trivia

$A \in \mathbb{R}^{n \times r}, B \in \mathbb{R}^{m \times r}$, which product is well-defined?
a) $B A$
b) $A^{\top} B$
c) $A B^{\top}$
$A \in \mathbb{R}^{n \times r}, B \in \mathbb{R}^{m \times r}$, what is $\left(A B^{\top}\right)^{\top}$?
a) $A^{\top} B$
b) $B^{\top} A^{\top}$
c) $B A^{\top}$

What is the matrix product computed by $C_{j i}=\sum_{s=1}^{r} A_{i s} B_{j s}$?
a) $C=A B^{\top}$
b) $C=B^{\top} A$
c) $C=B A^{\top}$
$A, B \in \mathbb{R}^{n \times n}$ have an inverse A^{-1}, B^{-1}, what is not equal to $A A^{-1} B$?
a) $A^{-1} B A$
b) B
c) $B B^{-1} B$

Normed

Vector Spaces

Normed Vector Spaces

A normed vector space is a vector space \mathcal{V} with a function $\|\cdot\|: \mathcal{V} \rightarrow \mathbb{R}_{+}$, called norm, satisfying the following properties for all $\mathrm{v}, \mathrm{w} \in \mathcal{V}$ and $\alpha \in \mathbb{R}$:

$$
\begin{array}{rlr}
\|\mathrm{v}+\mathrm{w}\| & \leq\|\mathrm{v}\|+\|\mathrm{w}\| & \text { (triangle inequality) } \\
\|\alpha \mathrm{v}\| & =|\alpha|\|\mathrm{v}\| & \text { (homogeneity) } \\
\|\mathrm{v}\|=0 & \Leftrightarrow \mathrm{v}=0 &
\end{array}
$$

The norm measures the length of a vector space

The Euclidean Space

The d-dimensional Euclidean space is the space of \mathbb{R}^{d} with the Euclidean norm:

$$
\|\mathrm{v}\|_{2}=\|\mathrm{v}\|=\sqrt{\sum_{i=1}^{d} v_{i}^{2}}
$$

The Euclidean norm computes the length of a vector by means of the Pythagorean theorem:

$$
\|\mathrm{v}\|^{2}=v_{1}^{2}+v_{2}^{2}
$$

The Inner Product and the Euclidean Norm

The inner product is defined by the lengths of the vectors and the cosine of the angle between them.

$$
\begin{aligned}
\mathrm{v}^{\top} \mathrm{w} & =\sum_{i=1}^{d} v_{i} w_{i} \\
& =\cos \varangle(\mathrm{v}, \mathrm{w})\|\mathrm{v}\|\|\mathrm{w}\|
\end{aligned}
$$

Orthogonal Vectors

If two vectors are orthogonal, then $\cos \varangle(v, w)=0$ and the inner product is zero

$$
v^{\top} w=\cos \varangle(v, w)\|v\|\|w\|=0
$$

Two vectors are called orthonormal if they are orthogonal and have unit norm $\|v\|=\|w\|=1$.

The Inner Product and Projections

The inner product of a vector v and a normalized vector $\frac{\mathrm{w}}{\|\mathrm{w}\|}$ computes the length of the projection p_{v} of v onto w :

$$
\begin{aligned}
\cos (\phi) & =\frac{\left\|p_{v}\right\|}{\|v\|} \\
\Leftrightarrow\left\|p_{v}\right\| & =\cos (\phi)\|v\|=v^{\top} \frac{w}{\|w\|} \\
\Rightarrow p_{v} & =\frac{w w^{\top}}{\|w\|^{2}} v
\end{aligned}
$$

The Manhattan Norm

The Manhattan norm is defined as:

$$
\|\mathrm{v}\|_{1}=|\mathrm{v}|=\sum_{i=1}^{d}\left|v_{i}\right|
$$

The Manhattan norm computes the length of a vector coordinate-wise:

$$
|v|=\left|v_{1}\right|+\left|v_{2}\right|
$$

L_{p}-norms

For $p \in[1, \infty]$, the function $\|\cdot\|_{p}$ is a norm, where

$$
\|\mathrm{v}\|_{p}=\left(\sum_{i=1}^{d}\left|v_{i}\right|^{p}\right)^{1 / p}
$$

The two-dimensional circles $\left\{\mathrm{v} \in \mathbb{R}^{2} \mid\|\mathrm{v}\|_{p}=1\right\}$ look as follows:

$p=1$

$p=2$

$p=\infty$

So, the norm measures the

 length of a vector. Can we also measure the length of a matrix?Yes, matrix norms are the same but different.

Matrix Norms

We can extend the L_{p} vector normes to the element-wise L_{p} matrix norms:

$$
\|A\|_{p}=\left(\sum_{i=1}^{n} \sum_{j=1}^{m}\left|A_{j i}\right|^{p}\right)^{1 / p}
$$

Furthermore, we introduce the operator norm

$$
\|A\|_{o p}=\max _{\|v\|=1}\|A v\|
$$

Orthogonal Matrices

A matrix A with orthogonal columns satisfies

$$
A^{\top} A=\operatorname{diag}\left(\left\|A_{\cdot 1}\right\|^{2}, \ldots,\left\|A_{\cdot}\right\|^{2}\right)
$$

A matrix A with orthonormal columns satisfies

$$
A^{\top} A=\operatorname{diag}(1, \ldots, 1)
$$

A square matrix $A \in \mathbb{R}^{n \times n}$ is called orthogonal if

$$
A^{\top} A=A A^{\top}=1
$$

Norms and Orthogonal Invariance

A vector norm $\|\cdot\|$ is called orthogonal invariant if for all $v \in \mathbb{R}^{n}$ and orthogonal matrices $X \in \mathbb{R}^{n \times n}$ we have

$$
\|X \mathrm{v}\|=\|\mathrm{v}\|
$$

A matrix norm $\|\cdot\|$ is called orthogonal invariant if for all $V \in \mathbb{R}^{n \times d}$ and orthogonal matrices $X \in \mathbb{R}^{n \times n}$ we have

$$
\|X V\|=\|V\|
$$

Matrix Operations:

The Trace

The Trace of a Matrix

The trace sums the elements on the diagonal of a matrix. Let $A \in \mathbb{R}^{n \times n}$, then

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} A_{i i}
$$

$1 \operatorname{tr}(c A+B)=c \operatorname{tr}(A)+\operatorname{tr}(B)$ (linearity)
$2 \operatorname{tr}\left(A^{\top}\right)=\operatorname{tr}(A)$
$3 \operatorname{tr}(A B C D)=\operatorname{tr}(B C D A)=\operatorname{tr}(C D A B)=\operatorname{tr}(D A B C)$ (cycling property)

The L_{2}-Norms are Induced by the Trace of the Product

For any vector $v \in \mathbb{R}^{d}$ and matrix $A \in \mathbb{R}^{n \times d}$, we have

$$
\|\mathrm{v}\|^{2}=\mathrm{v}^{\top} \mathrm{v}=\operatorname{tr}\left(\mathrm{v}^{\top} \mathrm{v}\right) \quad\|A\|^{2}=\operatorname{tr}\left(A^{\top} A\right)
$$

From this property derive the binomial formulas of vectors and matrices:

$$
\begin{aligned}
\|x-y\|^{2} & =(x-y)^{\top}(x-y)=\|x\|^{2}-2\langle x, y\rangle+\|y\|^{2} \\
\|X-Y\|^{2} & =\operatorname{tr}\left((X-Y)^{\top}(X-Y)\right)=\|X\|^{2}-2\langle X, Y\rangle+\|Y\|^{2}
\end{aligned}
$$

And now one super important cool thing:

The Singular Value Decomposition

Singular Value Decomposition

Theorem (SVD)

For every matrix $X \in \mathbb{R}^{n \times p}$ there exist orthogonal matrices $U \in \mathbb{R}^{n \times n}, V \in \mathbb{R}^{p \times p}$ and $\Sigma \in \mathbb{R}^{n \times p}$ such that

$$
X=U \Sigma V^{\top}, \text { where }
$$

- $U^{\top} U=U U^{\top}=I_{n}, V^{\top} V=V V^{\top}=I_{p}$

■ Σ is a rectangular diagonal matrix, $\Sigma_{11} \geq \ldots \geq \Sigma_{k k}$ where $k=\min \{n, p\}$

The column vectors $U_{\cdot s}$ and $V_{\cdot s}$ are called left and right singular vectors and the values $\sigma_{i}=\Sigma_{i i}$ are called singular values
($1 \leq i \leq l$).

SVD Visualization for $n>p$

SVD Visualization for $p>n$

SVD Determines if a Matrix is Invertible

A（ $n \times n$ ）matrix $A=U \Sigma V^{\top}$ is invertible if all singular values are larger than zero．The inverse is given by

$$
\begin{gathered}
A^{-1}=V \Sigma^{-1} U^{\top}, \text { where } \\
\Sigma=\left(\begin{array}{cccc}
\sigma_{1} & 0 & \ldots & 0 \\
0 & \sigma_{2} & \ldots & 0 \\
& & \ddots & \\
0 & 0 & \ldots & \sigma_{n}
\end{array}\right), \quad \Sigma^{-1}=\left(\begin{array}{cccc}
\frac{1}{\sigma_{1}} & 0 & \ldots & 0 \\
0 & \frac{1}{\sigma_{2}} & \ldots & 0 \\
& & \ddots & \\
0 & 0 & \ldots & \frac{1}{\sigma_{n}}
\end{array}\right)
\end{gathered}
$$

Since the matrices U and V of the SVD are orthogonal，we have：

$$
\begin{aligned}
& A A^{-1}=U \Sigma V^{\top} V \Sigma^{-1} U^{\top}=U \Sigma \Sigma^{-1} U^{\top}=U U^{\top}=I \\
& A^{-1} A=V \Sigma^{-1} U^{\top} U \Sigma V^{\top}=V \Sigma^{-1} \Sigma V^{\top}=V V^{\top}=I
\end{aligned}
$$

Vector and Matrix Norm Trivia

$v, w \in \mathbb{R}^{d}, \alpha \in \mathbb{R}$, then $\|\alpha v+w\| \leq$
a) $\alpha\|v+w\|$
b) $|\alpha|\|v\|+\|w\|$
c) $\alpha\|v\|+\|w\|$
$A, B \in \mathbb{R}^{n \times r}, \alpha \in \mathbb{R}$, then $\|A\| \leq$
a) $\|A-B\|+\|B\|$
b) $\alpha\left\|\frac{1}{\alpha} A\right\|$
c) $\|A\|^{2}$
$A, B, C \in \mathbb{R}^{n \times n}$, what is equal to $\operatorname{tr}(A B C)$?
a) $\operatorname{tr}(A C B)$
b) $\operatorname{tr}\left(A^{\top} C^{\top} B^{\top}\right)$
c) $\operatorname{tr}(A) \operatorname{tr}(B C)$
$A, B \in \mathbb{R}^{n \times n}, A$ is orthogonal, what is not equal to $\operatorname{tr}\left(A B A^{\top}\right)$?
a) $\operatorname{tr}\left(A^{\top} B A\right)$
b) $\operatorname{tr}(B)$
c) $\operatorname{tr}(A B A)$

