◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Linear Algebra - Best of

Sibylle Hess

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Vector Spaces

Vector Spaces

A vector space over the real numbers is a set of vectors ${\cal V}$ with two operations + and \cdot such that the following properties hold:

- Addition: for v, w we have $v + w \in \mathcal{V}$. The set of vectors with the addition $(\mathcal{V}, +)$ is an abelian group.
- Scalar multiplication: for $\alpha \in \mathbb{R}$ and $\mathbf{v} \in \mathcal{V}$, we have $\alpha \mathbf{v} \in \mathcal{V}$ such that the following properties hold:

•
$$\alpha(\beta \mathsf{v}) = (\alpha \beta) \mathsf{v}$$
 for $\alpha, \beta \in \mathbb{R}$ and $\mathsf{v} \in \mathcal{V}$

•
$$1v = v$$
 for $v \in \mathcal{V}$

Distributivity: the following properties hold:

(
$$\alpha + \beta$$
)v = α v + β v for $\alpha, \beta \in \mathbb{R}$ and v $\in \mathcal{V}$

•
$$\alpha(v + w) = \alpha v + \alpha w$$
 for $\alpha \in \mathbb{R}$ and $v, w \in \mathcal{V}$

<ロト < 同ト < 回ト < 回ト = 三日

What is Allowed in a Vector Space?

A vector space is a structure where you can do most operations you know from real numbers, but not all. Let $\alpha \in \mathbb{R}, v, w \in \mathcal{V}$.

The following operations are well-defined:

•
$$v/\alpha = \frac{1}{\alpha}v$$
 for $\alpha \neq 0$
• $v - w$

What you can not do:

イロト 不得 トイヨト イヨト ヨー めんの

The Vector Space \mathbb{R}^d

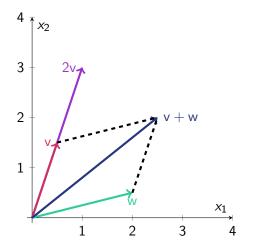
The elements of the vector space \mathbb{R}^d are *d*-dimensional vectors

$$\mathsf{v} = egin{pmatrix} \mathsf{v}_1 \ dots \ \mathsf{v}_d \end{pmatrix}, \quad \mathsf{v}_i \in \mathbb{R} ext{ for } 1 \leq i \leq d.$$

For vectors, the addition between vectors and the scalar multiplication are defined for $v, w \in \mathbb{R}^d$ and $\alpha \in \mathbb{R}$ as

$$\mathbf{v} + \mathbf{w} = \begin{pmatrix} \mathbf{v}_1 + \mathbf{w}_1 \\ \vdots \\ \mathbf{v}_d + \mathbf{w}_d \end{pmatrix}, \alpha \mathbf{v} = \begin{pmatrix} \alpha \mathbf{v}_1 \\ \vdots \\ \alpha \mathbf{v}_d \end{pmatrix}$$

Example: the Vector Space \mathbb{R}^2



$$v = \begin{pmatrix} 0.5\\ 1.5 \end{pmatrix}$$
$$w = \begin{pmatrix} 2\\ 0.5 \end{pmatrix}$$
$$v + w = \begin{pmatrix} 2.5\\ 2 \end{pmatrix}$$
$$2v = \begin{pmatrix} 1\\ 3 \end{pmatrix}$$

▲ロト ▲母 ト ▲目 ト ▲目 ト ● 日 ● ● ●

イロト イボト イヨト イヨト 二日

Are there other important vector spaces next to \mathbb{R}^d ?

Yes, the vector space of matrices $\mathbb{R}^{n \times d}$.

<ロト < 同ト < 回ト < 回ト = 三日

Why are matrices important? Because data is represented as a matrix.

Data Representation by a Matrix

ID	F_1	F_2	F ₃		F _d
1	5.1	3.5	1.4		0.2
2	6.4	3.5	4.5		1.2
÷	÷	:	:	:	÷
n	5.9	3.0	5.0		1.8

A data table of *n* observations of *d* features is represented by a $(n \times d)$ matrix.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q ()

Matrices and Their Notation

An $(n \times d)$ matrix concatenates n d-dimensional vectors column-wise $(A_{\cdot j} \text{ denotes the column-vector } j \text{ of } A)$

$$A = \begin{pmatrix} | & & | \\ A_{\cdot 1} & \dots & A_{\cdot d} \\ | & & | \end{pmatrix} = \begin{pmatrix} A_{11} & \dots & A_{1d} \\ \vdots & & \vdots \\ A_{n1} & \dots & A_{nd} \end{pmatrix}$$

Simultaneously, we can see a matrix as concatenation of d row-vectors $(A_{i.})$:

$$A = \begin{pmatrix} - & A_{1.} & - \\ & \vdots & \\ - & A_{n.} & - \end{pmatrix} = \begin{pmatrix} A_{11} & \dots & A_{1d} \\ \vdots & & \vdots \\ A_{n1} & \dots & A_{nd} \end{pmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○ ○

The Vector Space $\mathbb{R}^{n \times d}$

The elements of the vector space $\mathbb{R}^{n \times d}$ are $(n \times d)$ -dimensional matrices.

The addition between matrices and the scalar multiplication are defined for $A, B \in \mathbb{R}^{n \times d}$ and $\alpha \in \mathbb{R}$ as

$$A + B = \begin{pmatrix} A_{11} + B_{11} & \dots & A_{1d} + B_{1d} \\ \vdots & & \vdots \\ A_{n1} + B_{n1} & \dots & A_{nd} + B_{nd} \end{pmatrix}$$
$$\alpha A = \begin{pmatrix} \alpha A_{11} & \dots & \alpha A_{1d} \\ \vdots & & \vdots \\ \alpha A_{n1} & \dots & \alpha A_{nd} \end{pmatrix}$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ つへの

Matrix Operations: The Transpose

The Transpose of a Matrix Swaps the Dimensionality

The transpose of a matrix changes row-vectors into column vectors and vice versa:

$$A = \begin{pmatrix} | & | \\ A_{.1} & \dots & A_{.d} \\ | & | \end{pmatrix} = \begin{pmatrix} A_{11} & \dots & A_{1d} \\ \vdots & \vdots \\ A_{n1} & \dots & A_{nd} \end{pmatrix} \in \mathbb{R}^{n \times d}$$
$$A^{\top} = \begin{pmatrix} - & A_{.1}^{\top} & - \\ \vdots \\ - & A_{.d}^{\top} & - \end{pmatrix} = \begin{pmatrix} A_{11} & \dots & A_{n1} \\ \vdots & \vdots \\ A_{1d} & \dots & A_{nd} \end{pmatrix} \in \mathbb{R}^{d \times n}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The Transpose of a Column Vector Makes it a Row Vector

The transpose of a *d*-dimensional vector has an interpretation as transpose of a $(d \times 1)$ matrix:

$$\begin{aligned} \mathbf{v} &= \begin{pmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_d \end{pmatrix} & \in \mathbb{R}^{d \times 1} \\ \mathbf{v}^\top &= \begin{pmatrix} \mathbf{v}_1 & \dots & \mathbf{v}_d \end{pmatrix} & \in \mathbb{R}^{1 \times d} \end{aligned}$$

The Transpose of the Transpose Returns the Original Matrix

For any matrix $A \in \mathbb{R}^{n \times d}$ we have $A^{\top \top} = A$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \qquad A^{\top} = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} \qquad A^{\top^{\top}} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

Symmetric Matrices are Invariant to Transposition

A symmetric matrix is a matrix $A \in \mathbb{R}^{n \times n}$ such that $A^{\top} = A$:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 6 \\ 3 & 6 & 7 \end{pmatrix} \qquad A^{\top} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 6 \\ 3 & 6 & 7 \end{pmatrix}$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q ()

Diagonal Matrices are Symmetric

A diagonal matrix is a symmetric matrix having only nonzero elements on the diagonal:

diag
$$(a_1, \ldots, a_n) = \begin{pmatrix} a_1 & 0 & \ldots & 0 \\ 0 & a_2 & \ldots & 0 \\ & & \ddots & \\ 0 & 0 & \ldots & a_n \end{pmatrix}$$

イロト イポト イヨト イヨト ヨー わらの

Okay, great, we can add, scale and transpose matrices/data. Isn't that kinda lame?

Yah, it gets interesting with the matrix product.

Inner and Outer Product of Vectors

The inner product of two vectors $v, w \in \mathbb{R}^d$ returns a scalar:

$$\mathbf{v}^{\top}\mathbf{w} = \begin{pmatrix} \mathbf{v}_1 & \dots & \mathbf{v}_d \end{pmatrix} \begin{pmatrix} \mathbf{w}_1 \\ \vdots \\ \mathbf{w}_d \end{pmatrix} = \sum_{i=1}^d \mathbf{v}_i \mathbf{w}_i$$

The outer product of two vectors $v \in \mathbb{R}^d$ and $w \in \mathbb{R}^n$ returns a $(d \times n)$ matrix:

$$\mathbf{v}\mathbf{w}^{\top} = \begin{pmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_d \end{pmatrix} \begin{pmatrix} w_1 & \dots & w_n \end{pmatrix} = \begin{pmatrix} \mathbf{v}_1 \mathbf{w}^{\top} \\ \vdots \\ \mathbf{v}_d \mathbf{w}^{\top} \end{pmatrix} = \begin{pmatrix} \mathbf{v}_1 w_1 & \dots & \mathbf{v}_1 w_n \\ \vdots & & \vdots \\ \mathbf{v}_d w_1 & \dots & \mathbf{v}_d w_n \end{pmatrix}$$

▲□▶▲□▶▲≡▶▲≡▶ = ● ●

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 • ��や

Matrix Multiplication

Given $A \in \mathbb{R}^{n \times r}$ and $B \in \mathbb{R}^{r \times d}$, the matrix product $C = AB \in \mathbb{R}^{n \times d}$ is defined as

$$C = \begin{pmatrix} A_{1} \cdot B_{\cdot 1} & \dots & A_{1} \cdot B_{\cdot d} \\ \vdots & & \vdots \\ A_{n} \cdot B_{\cdot 1} & \dots & A_{n} \cdot B_{\cdot d} \end{pmatrix} = \begin{pmatrix} - & A_{1} \cdot & - \\ \vdots & \\ - & A_{n} \cdot & - \end{pmatrix} \begin{pmatrix} | & & | \\ B_{\cdot 1} & \dots & B_{\cdot d} \\ | & & | \end{pmatrix}$$

Every element C_{ji} is computed by the inner product of row j and column i (row-times-column)

$$C_{ji} = A_{j.}B_{.i} = \sum_{s=1}^{r} A_{js}B_{si}$$

Another View on Matrix Multiplication

Given $A \in \mathbb{R}^{n \times r}$ and $B \in \mathbb{R}^{r \times d}$, we can also state the product C = AB in terms of the outer product:

$$C = \sum_{s=1}^{r} \begin{pmatrix} A_{1s}B_{s1} & \dots & A_{1s}B_{sd} \\ \vdots & & \vdots \\ A_{ns}B_{s1} & \dots & A_{ns}B_{sd} \end{pmatrix} = \begin{pmatrix} | & & | \\ A_{\cdot 1} & \dots & A_{\cdot r} \\ | & & | \end{pmatrix} \begin{pmatrix} - & B_{1\cdot} & - \\ & \vdots \\ - & B_{r\cdot} & - \end{pmatrix}$$

The matrix product is the sum of outer products of corresponding column- and row-vectors (column-times-row):

$$C = \sum_{s=1}^{r} \begin{pmatrix} | \\ A_{\cdot s} \\ | \end{pmatrix} \begin{pmatrix} - & B_{s \cdot} & - \end{pmatrix} = \sum_{s=1}^{r} A_{\cdot s} B_{s \cdot}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

イロト イポト イミト イミト ミー のくの

Multiplying the Identity Matrix Doesn't Change Anything

The identity matrix I is a diagonal matrix having only ones on the diagonal:

$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Given $A \in \mathbb{R}^{n \times d}$, and I_n the $(n \times n)$ identity matrix and I_d the $(d \times d)$ identity matrix, then we have

$$I_n A = A = A I_d$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

The Transpose of a Matrix Product

We have for $A \in \mathbb{R}^{n \times r}$, $B \in \mathbb{R}^{r \times d}$ and C = AB

$$C^{\top} = \begin{pmatrix} A_1 \cdot B_{\cdot 1} & \dots & A_1 \cdot B_{\cdot d} \\ \vdots & & \vdots \\ A_n \cdot B_{\cdot 1} & \dots & A_n \cdot B_{\cdot d} \end{pmatrix}^{\top} = \begin{pmatrix} A_1 \cdot B_{\cdot 1} & \dots & A_n \cdot B_{\cdot 1} \\ \vdots & & \vdots \\ A_1 \cdot B_{\cdot d} & \dots & A_n \cdot B_{\cdot d} \end{pmatrix}$$
$$= \begin{pmatrix} B_{\cdot 1}^{\top} A_{1 \cdot}^{\top} & \dots & B_{\cdot 1}^{\top} A_{n \cdot}^{\top} \\ \vdots & & \vdots \\ B_{\cdot d}^{\top} A_{1 \cdot}^{\top} & \dots & B_{\cdot d}^{\top} A_{n \cdot}^{\top} \end{pmatrix} = B^{\top} A^{\top}$$

イロト 不得 トイヨト イヨト 二日

If we can multiply matrices, can we then also divide by them?

Just sometimes, if the matrix has an inverse.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ つへの

Inverse Matrices

The inverse matrix to a matrix $A \in \mathbb{R}^{n \times n}$ is a matrix A^{-1} satisfying

$$AA^{-1} = A^{-1}A = I$$

Diagonal matrices with nonzero elements on the diagonal have an inverse:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix} = I$$

Okay, but why is this now interesting?

Because matrix multiplication is computable fast, and almost every data operation can be written as a matrix operation.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Matrix Product Trivia

$$A \in \mathbb{R}^{n \times r}, B \in \mathbb{R}^{m \times r}$$
, which product is well-defined?
a) BA b) $A^{\top}B$ c) AB^{\top}
 $A \in \mathbb{R}^{n \times r}, B \in \mathbb{R}^{m \times r}$, what is $(AB^{\top})^{\top}$?
a) $A^{\top}B$ b) $B^{\top}A^{\top}$ c) BA^{\top}
What is the matrix product computed by $C_{ji} = \sum_{s=1}^{r} A_{is}B_{js}$?
a) $C = AB^{\top}$ b) $C = B^{\top}A$ c) $C = BA^{\top}$
 $A = B \in \mathbb{R}^{n \times n}$ have an inverse $A^{-1}B^{-1}$ what is **not** equal to $AA^{\top}B$

A, $B \in \mathbb{R}^{n \times n}$ have an inverse A^{-1} , B^{-1} , what is **not** equal to $AA^{-1}B$? a) $A^{-1}BA$ b) B c) $BB^{-1}B$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ つへの

Normed Vector Spaces

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - つへで

Normed Vector Spaces

A normed vector space is a vector space \mathcal{V} with a function $\|\cdot\|: \mathcal{V} \to \mathbb{R}_+$, called norm, satisfying the following properties for all v, w $\in \mathcal{V}$ and $\alpha \in \mathbb{R}$:

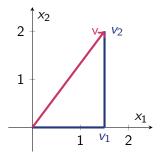
$$\begin{split} \|\mathbf{v} + \mathbf{w}\| &\leq \|\mathbf{v}\| + \|\mathbf{w}\| \qquad (\text{triangle inequality})\\ \|\alpha \mathbf{v}\| &= |\alpha| \|\mathbf{v}\| \qquad (\text{homogeneity})\\ \|\mathbf{v}\| &= \mathbf{0} \Leftrightarrow \mathbf{v} = \mathbf{0} \end{split}$$

The norm measures the length of a vector space

The Euclidean Space

The *d*-dimensional Euclidean space is the space of \mathbb{R}^d with the Euclidean norm:

$$\|\mathbf{v}\|_2 = \|\mathbf{v}\| = \sqrt{\sum_{i=1}^d v_i^2}$$



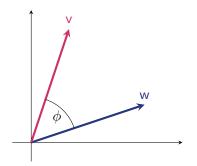
The Euclidean norm computes the length of a vector by means of the Pythagorean theorem:

$$\|\mathbf{v}\|^2 = v_1^2 + v_2^2$$

イロト 不得 トイヨト イヨト

3

The Inner Product and the Euclidean Norm



The inner product is defined by the lengths of the vectors and the cosine of the angle between them.

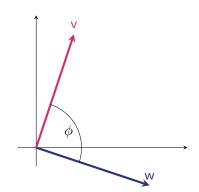
$$\mathbf{v}^{ op}\mathbf{w} = \sum_{i=1}^{d} v_i w_i$$

= cos <(v, w)||v||||w||

イロト 不得 トイヨト イヨト

3

Orthogonal Vectors



If two vectors are orthogonal, then $\cos \sphericalangle(v, w) = 0$ and the inner product is zero

$$v^\top w = \cos \sphericalangle (v,w) \|v\| \|w\| = 0$$

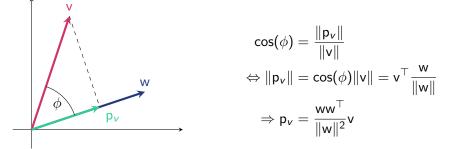
Two vectors are called orthonormal if they are orthogonal and have unit norm $\|v\| = \|w\| = 1.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - つへぐ

◆□> ◆□> ◆注> ◆注> 二注

The Inner Product and Projections

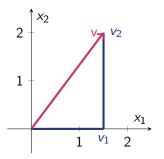
The inner product of a vector v and a normalized vector $\frac{w}{\|w\|}$ computes the length of the projection p_v of v onto w:



The Manhattan Norm

The Manhattan norm is defined as:

$$\|\mathbf{v}\|_1 = |\mathbf{v}| = \sum_{i=1}^d |v_i|$$



The Manhattan norm computes the length of a vector coordinate-wise:

• • • • • • • •

 $|\mathbf{v}| = |\mathbf{v}_1| + |\mathbf{v}_2|$

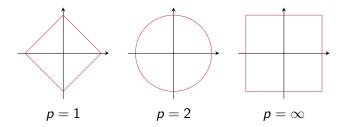
프 🕨 🗆 프

L_p -norms

For $p\in [1,\infty]$, the function $\|\cdot\|_p$ is a norm, where

$$\|\mathbf{v}\|_{p} = \left(\sum_{i=1}^{d} |v_i|^{p}\right)^{1/p}$$

The two-dimensional circles $\{v \in \mathbb{R}^2 | \|v\|_p = 1\}$ look as follows:



So, the norm measures the length of a vector. Can we also measure the length of a matrix?

Yes, matrix norms are the same but different.

メロトメ 日本 メモトメ モト

э

Matrix Norms

We can extend the L_p vector normes to the element-wise L_p matrix norms:

$$||A||_{p} = \left(\sum_{i=1}^{n} \sum_{j=1}^{m} |A_{ji}|^{p}\right)^{1/p}$$

Furthermore, we introduce the operator norm

$$\|A\|_{op} = \max_{\|v\|=1} \|Av\|$$

Orthogonal Matrices

A matrix A with orthogonal columns satisfies

$$A^\top A = \mathsf{diag}(\|A_{\cdot 1}\|^2, \dots, \|A_{\cdot d}\|^2)$$

A matrix A with orthonormal columns satisfies

$$A^{\top}A = \operatorname{diag}(1,\ldots,1)$$

A square matrix $A \in \mathbb{R}^{n \times n}$ is called orthogonal if

$$A^{\top}A = AA^{\top} = I$$

ロトス団トスヨトスヨト、ヨーのAで

≣ ► < ≣ ►

Norms and Orthogonal Invariance

A vector norm $\|\cdot\|$ is called orthogonal invariant if for all $v \in \mathbb{R}^n$ and orthogonal matrices $X \in \mathbb{R}^{n \times n}$ we have

$$\|X\mathbf{v}\| = \|\mathbf{v}\|$$

A matrix norm $\|\cdot\|$ is called orthogonal invariant if for all $V \in \mathbb{R}^{n \times d}$ and orthogonal matrices $X \in \mathbb{R}^{n \times n}$ we have

$$\|XV\| = \|V\|$$

ヘロト 人間 ト 人 ヨト 人 ヨトー

æ

Matrix Operations: The Trace

The Trace of a Matrix

The trace sums the elements on the diagonal of a matrix. Let $A \in \mathbb{R}^{n \times n}$, then

$$\mathsf{tr}(A) = \sum_{i=1}^n A_{ii}$$

1 tr(cA + B) = c tr(A) + tr(B) (linearity)

2
$$\operatorname{tr}(A^{\top}) = \operatorname{tr}(A)$$

If tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC) (cycling
property)

▶ ★ 臣 ▶ ...

The L_2 -Norms are Induced by the Trace of the Product

For any vector $v \in \mathbb{R}^d$ and matrix $A \in \mathbb{R}^{n \times d}$, we have

$$\|\mathbf{v}\|^2 = \mathbf{v}^\top \mathbf{v} = \operatorname{tr}(\mathbf{v}^\top \mathbf{v}) \qquad \qquad \|A\|^2 = \operatorname{tr}(A^\top A)$$

From this property derive the binomial formulas of vectors and matrices:

$$\|\mathbf{x} - \mathbf{y}\|^{2} = (\mathbf{x} - \mathbf{y})^{\top} (\mathbf{x} - \mathbf{y}) = \|\mathbf{x}\|^{2} - 2\langle \mathbf{x}, \mathbf{y} \rangle + \|\mathbf{y}\|^{2}$$
$$\|X - Y\|^{2} = tr((X - Y)^{\top} (X - Y)) = \|X\|^{2} - 2\langle X, Y \rangle + \|Y\|^{2}$$

And now one super important cool thing:

The Singular Value Decomposition

Singular Value Decomposition

Theorem (SVD)

For every matrix $X \in \mathbb{R}^{n \times p}$ there exist orthogonal matrices $U \in \mathbb{R}^{n \times n}, V \in \mathbb{R}^{p \times p}$ and $\Sigma \in \mathbb{R}^{n \times p}$ such that

 $X = U\Sigma V^{\top}$, where

$$U^{\top}U = UU^{\top} = I_n, V^{\top}V = VV^{\top} = I_p$$

• Σ is a rectangular diagonal matrix, $\Sigma_{11} \ge ... \ge \Sigma_{kk}$ where $k = \min\{n, p\}$

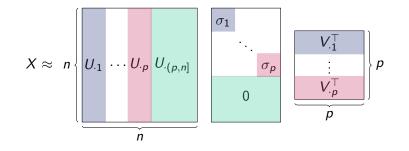
The column vectors $U_{\cdot s}$ and $V_{\cdot s}$ are called left and right singular vectors and the values $\sigma_i = \Sigma_{ii}$ are called singular values $(1 \le i \le l)$.

Vector Spaces

Normed Vector Spaces

▶ ★ 문 ▶ ★ 문 ▶ · 문 ·

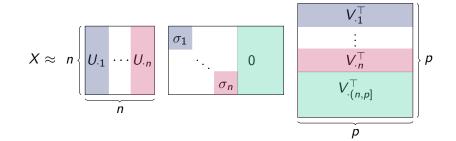
SVD Visualization for n > p



Vector Spaces

Normed Vector Spaces

SVD Visualization for p > n



SVD Determines if a Matrix is Invertible

A $(n \times n)$ matrix $A = U\Sigma V^{\top}$ is invertible if all singular values are larger than zero. The inverse is given by

$$A^{-1} = V \Sigma^{-1} U^{\top}$$
, where

$$\Sigma = \begin{pmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & \dots & 0 \\ & & \ddots & \\ 0 & 0 & \dots & \sigma_n \end{pmatrix}, \qquad \Sigma^{-1} = \begin{pmatrix} \frac{1}{\sigma_1} & 0 & \dots & 0 \\ 0 & \frac{1}{\sigma_2} & \dots & 0 \\ & & \ddots & \\ 0 & 0 & \dots & \frac{1}{\sigma_n} \end{pmatrix}$$

Since the matrices U and V of the SVD are orthogonal, we have:

$$AA^{-1} = U\Sigma V^{\top} V\Sigma^{-1} U^{\top} = U\Sigma\Sigma^{-1} U^{\top} = UU^{\top} = I$$
$$A^{-1}A = V\Sigma^{-1} U^{\top} U\Sigma V^{\top} = V\Sigma^{-1} \Sigma V^{\top} = VV^{\top} = I$$

Vector and Matrix Norm Trivia

$$\begin{array}{l} \mathbf{v}, \mathbf{w} \in \mathbb{R}^{d}, \ \alpha \in \mathbb{R}, \ \text{then } \|\alpha \mathbf{v} + \mathbf{w}\| \leq \\ \text{a)} \ \alpha \|\mathbf{v} + \mathbf{w}\| \qquad \text{b)} \ |\alpha| \|\mathbf{v}\| + \|\mathbf{w}\| \qquad \text{c)} \ \alpha \|\mathbf{v}\| + \|\mathbf{w}\| \\ A, B \in \mathbb{R}^{n \times r}, \ \alpha \in \mathbb{R}, \ \text{then } \|A\| \leq \\ \text{a)} \ \|A - B\| + \|B\| \qquad \text{b)} \ \alpha \|\frac{1}{\alpha}A\| \qquad \text{c)} \ \|A\|^{2} \\ A, B, C \in \mathbb{R}^{n \times n}, \ \text{what is equal to } \operatorname{tr}(ABC)? \\ \text{a)} \ \operatorname{tr}(ACB) \qquad \text{b)} \ \operatorname{tr}(A^{\top}C^{\top}B^{\top}) \qquad \text{c)} \ \operatorname{tr}(A) \ \operatorname{tr}(BC) \\ A, B \in \mathbb{R}^{n \times n}, \ A \ \text{is orthogonal, what is } \mathbf{not} \ \text{equal to } \operatorname{tr}(ABA^{\top})? \\ \text{a)} \ \operatorname{tr}(A^{\top}BA) \qquad \text{b)} \ \operatorname{tr}(B) \qquad \text{c)} \ \operatorname{tr}(ABA) \end{array}$$