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Vector Spaces

A vector space over the real numbers is a set of vectors V with two
operations + and · such that the following properties hold:

Addition: for v,w we have v + w ∈ V. The set of vectors with
the addition (V,+) is an abelian group.

Scalar multiplication: for α ∈ R and v ∈ V, we have αv ∈ V
such that the following properties hold:

α(βv) = (αβ)v for α, β ∈ R and v ∈ V
1v = v for v ∈ V

Distributivity: the following properties hold:

(α + β)v = αv + βv for α, β ∈ R and v ∈ V
α(v + w) = αv + αw for α ∈ R and v,w ∈ V
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What is Allowed in a Vector Space?

A vector space is a structure where you can do most operations
you know from real numbers, but not all. Let α ∈ R, v,w ∈ V.

The following operations are well-defined:

v/α = 1
αv for α 6= 0

v − w

What you can not do:

v · w
α/v
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The Vector Space Rd

The elements of the vector space Rd are d-dimensional vectors

v =

v1
...
vd

 , vi ∈ R for 1 ≤ i ≤ d .

For vectors, the addition between vectors and the scalar
multiplication are defined for v,w ∈ Rd and α ∈ R as

v + w =

v1 + w1
...

vd + wd

 , αv =

αv1...
αvd
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Example: the Vector Space R2
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Are there other important
vector spaces next to Rd?

Yes, the vector space of
matrices Rn×d .



Vector Spaces Normed Vector Spaces

Why are matrices important?

Because data is represented as
a matrix.
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Data Representation by a Matrix

ID F1 F2 F3 . . . Fd
1 5.1 3.5 1.4 . . . 0.2
2 6.4 3.5 4.5 . . . 1.2
...

...
...

...
...

...
n 5.9 3.0 5.0 . . . 1.8

A data table of n observations
of d features is represented by
a (n × d) matrix.



Vector Spaces Normed Vector Spaces

Matrices and Their Notation

An (n × d) matrix concatenates n d-dimensional vectors
column-wise (A·j denotes the column-vector j of A)

A =

 | |
A·1 . . . A·d
| |

 =

A11 . . . A1d
...

...
An1 . . . And


Simultaneously, we can see a matrix as concatenation of d
row-vectors (Ai ·):

A =

− A1· −
...

− An· −

 =

A11 . . . A1d
...

...
An1 . . . And
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The Vector Space Rn×d

The elements of the vector space Rn×d are (n × d)-dimensional
matrices.

The addition between matrices and the scalar multiplication are
defined for A,B ∈ Rn×d and α ∈ R as

A + B =

A11 + B11 . . . A1d + B1d
...

...
An1 + Bn1 . . . And + Bnd


αA =

αA11 . . . αA1d
...

...
αAn1 . . . αAnd
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Matrix Operations:

The Transpose
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The Transpose of a Matrix Swaps the Dimensionality

The transpose of a matrix changes row-vectors into column vectors
and vice versa:

A =

 | |
A·1 . . . A·d
| |

 =

A11 . . . A1d
...

...
An1 . . . And

 ∈ Rn×d

A> =

− A>·1 −
...

− A>·d −

 =

A11 . . . An1
...

...
A1d . . . And

 ∈ Rd×n



Vector Spaces Normed Vector Spaces

The Transpose of a Column Vector Makes it a Row Vector

The transpose of a d-dimensional vector has an interpretation as
transpose of a (d × 1) matrix:

v =

v1
...
vd

 ∈ Rd×1

v> =
(
v1 . . . vd

)
∈ R1×d



Vector Spaces Normed Vector Spaces

The Transpose of the Transpose Returns the Original
Matrix

For any matrix A ∈ Rn×d we have A>
>

= A

A =

(
1 2 3
4 5 6

)
A> =

1 4
2 5
3 6

 A>
>

=

(
1 2 3
4 5 6

)
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Symmetric Matrices are Invariant to Transposition

A symmetric matrix is a matrix A ∈ Rn×n such that A> = A:

A =

1 2 3
2 5 6
3 6 7

 A> =

1 2 3
2 5 6
3 6 7
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Diagonal Matrices are Symmetric

A diagonal matrix is a symmetric matrix having only nonzero
elements on the diagonal:

diag(a1, . . . , an) =


a1 0 . . . 0
0 a2 . . . 0

. . .

0 0 . . . an
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Okay, great, we can add, scale
and transpose matrices/data.

Isn’t that kinda lame?

Yah, it gets interesting with
the matrix product.
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Inner and Outer Product of Vectors

The inner product of two vectors v,w ∈ Rd returns a scalar:

v>w =
(
v1 . . . vd

)w1
...
wd

 =
d∑

i=1

viwi

The outer product of two vectors v ∈ Rd and w ∈ Rn returns a
(d × n) matrix:

vw> =

v1
...
vd

(w1 . . . wn

)
=

v1w>

...
vdw>

 =

v1w1 . . . v1wn
...

...
vdw1 . . . vdwn
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Matrix Multiplication

Given A ∈ Rn×r and B ∈ Rr×d , the matrix product
C = AB ∈ Rn×d is defined as

C =

A1·B·1 . . . A1·B·d
...

...
An·B·1 . . . An·B·d

 =

− A1· −
...

− An· −


 | |
B·1 . . . B·d
| |



Every element Cji is computed by the inner product of row j and
column i (row-times-column)

Cji = Aj ·B·i =
r∑

s=1

AjsBsi
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Another View on Matrix Multiplication

Given A ∈ Rn×r and B ∈ Rr×d , we can also state the product
C = AB in terms of the outer product:

C =
r∑

s=1

A1sBs1 . . . A1sBsd
...

...
AnsBs1 . . . AnsBsd

 =

 | |
A·1 . . . A·r
| |


− B1· −

...
− Br · −


The matrix product is the sum of outer products of corresponding
column- and row-vectors (column-times-row):

C =
r∑

s=1

 |A·s
|

(− Bs· −
)

=
r∑

s=1

A·sBs·
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Multiplying the Identity Matrix Doesn’t Change Anything

The identity matrix I is a diagonal matrix having only ones on the
diagonal:

I3 =

1 0 0
0 1 0
0 0 1


Given A ∈ Rn×d , and In the (n × n) identity matrix and Id the
(d × d) identity matrix, then we have

InA = A = AId



Vector Spaces Normed Vector Spaces

The Transpose of a Matrix Product

We have for A ∈ Rn×r , B ∈ Rr×d and C = AB

C> =

A1·B·1 . . . A1·B·d
...

...
An·B·1 . . . An·B·d


>

=

A1·B·1 . . . An·B·1
...

...
A1·B·d . . . An·B·d


=

B>·1A
>
1· . . . B>·1A

>
n·

...
...

B>·dA
>
1· . . . B>·dA

>
n·

 = B>A>
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If we can multiply matrices,
can we then also divide by

them?

Just sometimes, if the matrix
has an inverse.
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Inverse Matrices

The inverse matrix to a matrix A ∈ Rn×n is a matrix A−1 satisfying

AA−1 = A−1A = I

Diagonal matrices with nonzero elements on the diagonal have an
inverse: 1 0 0

0 2 0
0 0 3

1 0 0
0 1

2 0
0 0 1

3

 = I
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Okay, but why is this now
interesting?

Because matrix multiplication
is computable fast, and almost

every data operation can be
written as a matrix operation.
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Matrix Product Trivia

A ∈ Rn×r , B ∈ Rm×r , which product is well-defined?
a) BA b) A>B c) AB>

A ∈ Rn×r , B ∈ Rm×r , what is (AB>)>?
a) A>B b) B>A> c) BA>

What is the matrix product computed by Cji =
∑r

s=1 AisBjs?
a) C = AB> b) C = B>A c) C = BA>

A,B ∈ Rn×n have an inverse A−1,B−1, what is not equal to AA−1B?

a) A−1BA b) B c) BB−1B
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Normed
Vector Spaces
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Normed Vector Spaces

A normed vector space is a vector space V with a function
‖·‖ : V → R+, called norm, satisfying the following properties for
all v,w ∈ V and α ∈ R:

‖v + w‖ ≤ ‖v‖+ ‖w‖ (triangle inequality)

‖αv‖ = |α|‖v‖ (homogeneity)

‖v‖ = 0⇔ v = 0

The norm measures the length of a vector space
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The Euclidean Space

The d-dimensional Euclidean space is the space of Rd with the
Euclidean norm:

‖v‖2= ‖v‖ =

√√√√ d∑
i=1

v2i

1 2

1

2

v1

v2v

x1

x2
The Euclidean norm
computes the length of a
vector by means of the
Pythagorean theorem:

‖v‖2 = v21 + v22
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The Inner Product and the Euclidean Norm

w

v

φ

The inner product is defined by
the lengths of the vectors and
the cosine of the angle between
them.

v>w =
d∑

i=1

viwi

= cos^(v,w)‖v‖‖w‖



Vector Spaces Normed Vector Spaces

Orthogonal Vectors

w

v

φ

If two vectors are orthogonal,
then cos^(v,w) = 0 and the
inner product is zero

v>w = cos^(v,w)‖v‖‖w‖ = 0

Two vectors are called
orthonormal if they are
orthogonal and have unit norm
‖v‖ = ‖w‖ = 1.
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The Inner Product and Projections

The inner product of a vector v and a normalized vector w
‖w‖

computes the length of the projection pv of v onto w:

w

v

pv

φ

cos(φ) =
‖pv‖
‖v‖

⇔ ‖pv‖ = cos(φ)‖v‖ = v>
w

‖w‖

⇒ pv =
ww>

‖w‖2
v
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The Manhattan Norm

The Manhattan norm is defined as:

‖v‖1= |v| =
d∑

i=1

|vi |

1 2

1

2

v1

v2v

x1

x2

The Manhattan norm
computes the length of a
vector coordinate-wise:

|v| = |v1|+ |v2|
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Lp-norms

For p ∈ [1,∞], the function ‖·‖p is a norm, where

‖v‖p =

(
d∑

i=1

|vi |p
)1/p

The two-dimensional circles {v ∈ R2|‖v‖p = 1} look as follows:

p = 1 p = 2 p =∞
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So, the norm measures the
length of a vector. Can we also

measure the length of a
matrix?

Yes, matrix norms are the same
but different.
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Matrix Norms

We can extend the Lp vector normes to the element-wise Lp matrix
norms:

‖A‖p =

 n∑
i=1

m∑
j=1

|Aji |p
1/p

Furthermore, we introduce the operator norm

‖A‖op = max
‖v‖=1

‖Av‖
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Orthogonal Matrices

A matrix A with orthogonal columns satisfies

A>A = diag(‖A·1‖2, . . . , ‖A·d‖2)

A matrix A with orthonormal columns satisfies

A>A = diag(1, . . . , 1)

A square matrix A ∈ Rn×n is called orthogonal if

A>A = AA> = I



Vector Spaces Normed Vector Spaces

Norms and Orthogonal Invariance

A vector norm ‖·‖ is called orthogonal invariant if for all v ∈ Rn

and orthogonal matrices X ∈ Rn×n we have

‖Xv‖ = ‖v‖

A matrix norm ‖·‖ is called orthogonal invariant if for all
V ∈ Rn×d and orthogonal matrices X ∈ Rn×n we have

‖XV ‖ = ‖V ‖
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Matrix Operations:

The Trace
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The Trace of a Matrix

The trace sums the elements on the diagonal of a matrix. Let
A ∈ Rn×n, then

tr(A) =
n∑

i=1

Aii

1 tr(cA + B) = c tr(A) + tr(B) (linearity)

2 tr(A>) = tr(A)

3 tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC ) (cycling
property)
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The L2-Norms are Induced by the Trace of the Product

For any vector v ∈ Rd and matrix A ∈ Rn×d , we have

‖v‖2 = v>v = tr(v>v) ‖A‖2 = tr(A>A)

From this property derive the binomial formulas of vectors and
matrices:

‖x− y‖2 = (x− y)>(x− y) = ‖x‖2 − 2〈x, y〉+ ‖y‖2

‖X − Y ‖2 = tr((X − Y )>(X − Y )) = ‖X‖2 − 2〈X ,Y 〉+ ‖Y ‖2
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And now one super important
cool thing:

The Singular Value
Decomposition
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Singular Value Decomposition

Theorem (SVD)

For every matrix X ∈ Rn×p there exist orthogonal matrices
U ∈ Rn×n,V ∈ Rp×p and Σ ∈ Rn×p such that

X = UΣV>, where

U>U = UU> = In,V
>V = VV> = Ip

Σ is a rectangular diagonal matrix, Σ11 ≥ . . . ≥ Σkk where
k = min{n, p}

The column vectors U·s and V·s are called left and right singular
vectors and the values σi = Σii are called singular values
(1 ≤ i ≤ l).
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SVD Visualization for n > p

X ≈ U·1 . . .U·p U·(p,n]n

n

σ1
. . .

σp

0

V>·1
...

V>·p

p

p
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SVD Visualization for p > n

X ≈ U·1 . . .U·nn

n

σ1
. . .

σn

0

V>·1
...

V>·n

V>·(n,p]

p

p
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SVD Determines if a Matrix is Invertible

A (n × n) matrix A = UΣV> is invertible if all singular values are
larger than zero. The inverse is given by

A−1 = VΣ−1U>, where

Σ =


σ1 0 . . . 0
0 σ2 . . . 0

. . .

0 0 . . . σn

 , Σ−1 =


1
σ1

0 . . . 0

0 1
σ2

. . . 0

. . .

0 0 . . . 1
σn


Since the matrices U and V of the SVD are orthogonal, we have:

AA−1 = UΣV>VΣ−1U> = UΣΣ−1U> = UU> = I

A−1A = VΣ−1U>UΣV> = VΣ−1ΣV> = VV> = I
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Vector and Matrix Norm Trivia

v ,w ∈ Rd , α ∈ R, then ‖αv + w‖ ≤
a) α‖v + w‖ b) |α|‖v‖+ ‖w‖ c) α‖v‖+ ‖w‖

A,B ∈ Rn×r , α ∈ R, then ‖A‖ ≤
a) ‖A− B‖+ ‖B‖ b) α‖ 1αA‖ c) ‖A‖2

A,B,C ∈ Rn×n, what is equal to tr(ABC )?

a) tr(ACB) b) tr(A>C>B>) c) tr(A) tr(BC )

A,B ∈ Rn×n, A is orthogonal, what is not equal to tr(ABA>)?
a) tr(A>BA) b) tr(B) c) tr(ABA)
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